ObjectivesBrown adipose tissue (BAT) dissipates nutritional energy as heat through uncoupling protein 1 (UCP1). The discovery of functional BAT in healthy adult humans has promoted the search for pharmacological interventions to recruit and activate brown fat as a treatment of obesity and diabetes type II. These efforts require in vivo models to compare the efficacy of novel compounds in a relevant physiological context.MethodsWe generated a knock-in mouse line expressing firefly luciferase and near-infrared red florescent protein (iRFP713) driven by the regulatory elements of the endogenous Ucp1 gene.ResultsOur detailed characterization revealed that firefly luciferase activity faithfully reports endogenous Ucp1 gene expression in response to physiological and pharmacological stimuli. The iRFP713 fluorescence signal was detected in the interscapular BAT region of cold-exposed reporter mice in an allele-dosage dependent manner. Using this reporter mouse model, we detected a higher browning capacity in female peri-ovarian white adipose tissue compared to male epididymal WAT, which we further corroborated by molecular and morphological features. In situ imaging detected a strong luciferase activity signal in a previously unappreciated adipose tissue depot adjunct to the femoral muscle, now adopted as femoral brown adipose tissue. In addition, screening cultured adipocytes by bioluminescence imaging identified the selective Salt-Inducible Kinase inhibitor, HG-9-91-01, to increase Ucp1 gene expression and mitochondrial respiration in brown and brite adipocytes.ConclusionsIn our mouse model, firefly luciferase activity serves as a bona fide reporter for dynamic regulation of Ucp1. In addition, by means of iRFP713 we are able to monitor Ucp1 expression in a non-invasive fashion.
We studied the metabolic phenotype of a novel Ucp1-LUC-iRFP713 knock-in reporter gene mouse model originally generated to monitor endogenous Ucp1 gene expression. Both reporter mice and reporter cells reliably reflected Ucp1 gene expression in vivo and in vitro. We here report an unexpected reduction in UCP1 content in homozygous knock-in (KI) reporter mice. As a result, the thermogenic capacity of KI mice stimulated by norepinephrine was largely blunted, making them more sensitive to an acute cold exposure. In return, these reporter mice with reduced UCP1 expression enabled us to investigate the physiological role of UCP1 in the prevention of weight gain. We observed no substantial differences in body mass across the three genotypes, irrespective of the type of diet or the ambient temperature, possibly due to the insufficient UCP1 activation. Indeed, activation of UCP1 by daily injection of the selective β3-adrenergic receptor agonist CL316,243 resulted in significantly greater reduction of body weight in WT mice than in KI mice. Taken together, we conclude that the intact expression of UCP1 is essential for cold-induced thermogenesis but the presence of UCP1 per se does not protect mice from diet-induced obesity.
Adipocyte lipid droplets (LDs) play a crucial role in systemic lipid metabolism by storing and releasing lipids to meet the organism's energy needs. Hormonal signals such as catecholamines and insulin act on adipocyte LDs, and impaired responsiveness to these signals can lead to uncontrolled lipolysis, lipotoxicity, and a higher risk of metabolic diseases. To investigate the mechanisms that control LD function in human adipocytes, we employed techniques to obtain mesenchymal progenitor cells on a large scale and applied proximity labeling mediated by enhanced ascorbate peroxidase (APEX2) to identify the interactome of PLIN1 in differentiated adipocytes. We identified 70 proteins that interact specifically with PLIN1, including PNPLA2 and LIPE, which are the primary effectors of regulated triglyceride hydrolysis, and four members of the 14-3-3 protein family (YWHAB, YWHAE, YWHAZ, and YWHAG), which are known to regulate diverse signaling pathways. Functional studies showed that YWHAB is required for maximum cAMP-stimulated lipolysis and helps to mitigate the anti-lipolytic effects of insulin. These findings reveal new regulatory mechanisms that control lipolysis in human metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.