Microbial fuel cells (MFCs) have shown great advantages in electricity production, heavy metal removal, and energy recovery. However, the impact and mechanism of conflicting effects of numerous electron acceptors on heavy metal removal remain unknown. The effects of different initial heavy metal concentrations, cathodic dissolved oxygen, and electrode materials on the electricity generation and heavy metal removal efficiencies of Cu(II) and Cr(VI) were investigated in this study. When the initial concentration of Cr(VI) increased from 10 mg/L to 150 mg/L, the maximum voltage, coulomb efficiency, and maximum power density declined from 99 to 44 mV, 28.63% to 18.97%, and 14.29 to 0.62 mW/m2, and the removal efficiencies of Cu(II) and Cr(VI) decreased dramatically from 98.34% and 99.92% to 67.09% and 37.06%, respectively. Under anaerobic cathodic conditions, the removal efficiency and removal rate of Cu(II) and Cr(VI) were lower than those under aerobic conditions. When the cathode electrode was titanium sheet and graphite plate, the coulomb efficiency and maximum power density increased to 38.18%, 50.71%, 33.95 mW/m2, and 62.23 mW/m2. The removal efficiency and removal rates of Cu(II) and Cr(VI) were significantly increased to 98.09%, 86.13%, and 0.47, 0.50 mg/(L h) with a graphite plate, respectively. The pH of the cathode varied considerably greater as the MFC current increased. Cu(II) and Cr(VI) were removed and reduced to elemental Cu, Cu2O, and its oxides as well as Cr(OH)3 and Cr2O3 precipitates on the cathode electrode by cathodic bioelectrochemical reduction.
This study investigated the removal of cadmium (Cd) and lead (Pb) from the soil through phytoremediation using ryegrass combined with chelating agents. Soil leaching experiments were employed to determine the extraction efficiencies of chelating agents, including ethylenediaminetetraacetic acid (EDTA), citric acid (CA), sodium glutamate tetra acetate (GLDA), oxalic acid (OA), and diethylenetriaminepentaacetic acid (DTPA) on Cd and Pb. Soil pot experiments were conducted to determine the effects of five different chelating agents—GLDA, EDTA, DTPA, CA, and OA—on the growth of ryegrass and the enrichment of Cd and Pb. The main findings were as follows: (1) the extraction efficiencies for Cd and Pb in soil were found to be GLDA > EDTA > DTPA > CA > OA and EDTA > DTPA > GLDA > CA > OA, respectively. (2) The aminopolycarboxylic acid class of chelating agents significantly reduced Cd and Pb contents in the weak acid extractable and reducible states in the studied soil, yet were less effective in the extraction of their residue state. Using chelating agents increased the proportion of residual heavy metals while reducing those in the weak acid extractable and reducible states in the soil, thereby mitigating the harmful effects of these heavy metals on the soil ecology.
Dissolved oxygen (DO) plays an important role in the performance of biological wastewater treatment systems. This study investigated the effect of the DO concentration on nutrient removal performance and microbial community structure in side-stream activated sludge hydrolysis (SSH) and conventional anaerobic/anoxic/aerobic (A2O) processes. The results showed that the change in DO had little effect on the removal performance of chemical oxygen demand (COD), and the removal efficiencies were about 90% for both reactors. Compared with the high DO level (4.1–6.9 mg/L), the A2O and SSH reactors had better nitrogen removal performance at low (0.5–2.2 mg/L) and moderate (2.2–3.9 mg/L) DO levels, with ammonia (NH4+-N) removal efficiencies of 88–89% and 89–91%, respectively, and total nitrogen (TN) removal efficiencies of 74–76% and 75–81%, respectively. Directly reducing the DO concentration from high to low reduced the phosphate removal efficiencies of the A2O and SSH reactors from 80.2% and 86.2% to 63.1% and 70.6%, respectively, while re-elevating the DO concentration to moderate levels significantly improved the phosphate removal efficiencies to 94.6% and 96.0%, respectively. Compared to the A2O reactor, the SSH reactor had more stable and better nutrient removal performance under different DO conditions, partly due to the additional carbon sources produced through the sludge fermentation in the side-stream reactor. The decrease in the DO concentration resulted in a decrease in the relative abundance of Acinetobacter but an increase in the relative abundance of Competibacter, potentially leading to the deterioration in phosphorus removal.
A large number of microplastics (MPs) have been found in various stages of wastewater treatment plants, which may affect the functional microbial activity in activated sludge and lead to unstable pollutant removal performance. In this study, the effects of different concentrations of polylactic acid microplastics (PLA MPs) on system performance, nitrification and phosphorus (P) removal activities, and extracellular polymeric substances (EPS) were evaluated. The results showed that under the same influent conditions, low concentrations (50 particles/(g TS)) of PLA MPs had no significant effect on effluent quality. The average removal efficiencies of chemical oxygen demand, phosphate and ammonia were all above 80%, and the average removal efficiencies of total nitrogen remained above 70%. High concentrations (200 particles/(g TS)) of PLA MPs inhibited the activities of polyphosphate accumulating organisms (PAOs) and nitrifying bacteria. The specific anaerobic P release rate decreased from 37.7 to 23.1 mg P/(g VSS·h), and the specific aerobic P uptake rate also decreased significantly. The specific ammonia oxidation rate decreased from 0.67 to 0.34 mg N/(g VSS·h), while the change in specific nitrite oxidation rate was not significant. The dosing of PLA MPs decreased the total EPS and humic acid content. As the concentration of PLA MPs increased, microbial community diversity increased. The relative abundance of potential PAOs (i.e., Acinetobacter) increased from 0.08% to 12.57%, while the relative abundance of glycogen accumulating organisms (i.e., Competibacter and Defluviicoccus) showed no significant changes, which would lead to improved P removal performance. The relative abundance of denitrifying bacteria (i.e., Pseudomonas) decreased from 95.43% to 58.98%, potentially contributing to the decline in denitrification performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.