Bacteria are the highest abundant microorganisms in the soil. To investigate bacteria community structures, diversity, and functions, contrasting them in four different seasons all the year round with/within two different forest type soils of China. We analyzed soil bacterial community based on 16S rRNA gene sequencing via Illumina HiSeq platform at a temperate deciduous broad-leaved forest (Baotianman, BTM) and a tropical rainforest (Jianfengling, JFL). We obtained 51,137 operational taxonomic units (OTUs) and classified them into 44 phyla and 556 known genera, 18.2% of which had a relative abundance >1%. The composition in each phylum was similar between the two forest sites. Proteobacteria and Acidobacteria were the most abundant phyla in the soil samples between the two forest sites. The Shannon index did not significantly differ among the four seasons at BTM or JFL and was higher at BTM than JFL in each season. The bacteria community at both BTM and JFL showed two significant (P < 0.05) predicted functions related to carbon cycle (anoxygenic photoautotrophy sulfur oxidizing and anoxygenic photoautotrophy) and three significant (P < 0.05) predicted functions related to nitrogen cycle (nitrous denitrificaton, nitrite denitrification, and nitrous oxide denitrification). We provide the basis on how changes in bacterial community composition and diversity leading to differences in carbon and nitrogen cycles at the two forests.
An elastic contact model for three-dimensional layered or coated materials under coupled normal and tangential loads, with consideration of partial slip effects, has been developed in this paper. The response functions for calculating the displacements and stresses were determined in the frequency domain by using the Papkovich–Neuber potentials. The partial slip contact problem was solved by a numerical procedure based on the conjugate Gradient method and fast Fourier transform technique. The contact pressure, surface shear tractions, stick ratios, rigid body displacements, and subsurface stresses are analyzed under different conditions with variations in the material properties and coating thickness. Results show that stiffer coatings tend to decrease the stick ratios and the rigid ball tangential displacements in comparison to those with compliant coatings under the same contact conditions. For stiffer coatings, the values of the von Mises stress and compressive surface stress increase and the positions of maximum von Mises stress move up to the surface; meanwhile, the distributions of the compressive stress become asymmetric due to the action of the tangential load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.