China’s rapid economic development has resulted in a series of serious environmental pollution problems, such as atmospheric particulate pollution. However, the socioeconomic factors affecting energy-related PM2.5 emissions are indistinct. Therefore, this study first explored the change in PM2.5 emissions over time in China from 1995 to 2012. Then the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) model was adopted for quantitatively revealing the mechanisms of various factors on energy-related PM2.5 emissions. Finally, the Environmental Kuznets Curve (EKC) hypothesis was adopted to examine whether an EKC relationship between affluence and energy-related PM2.5 emissions is present from a multiscale perspective. The results showed that energy-related PM2.5 emissions in most regions showed an increasing trend over the study period. The influences of the increase in population, energy intensity, and energy use mix on energy-related PM2.5 emissions were positive and heterogeneous, and population scale was the major driving force of energy-related PM2.5 emissions. The effects of the increase in the urbanization level and the proportion of tertiary industry increased value to GDP on energy-related PM2.5 emissions varied from area to area. An inverse U-shape EKC relationship for energy-related PM2.5 emissions was not verified except for eastern China. The conclusions are valuable for reducing PM2.5 emissions without affecting China’s economic development.
Assembly system configuration determines the topological arrangement of stations with defined logical material flow among them. The design of assembly system configuration involves (1) subassembly planning that defines subassembly tasks and between-task material flows and (2) workload balancing that determines the task-station assignments. The assembly system configuration should be flexibly changed and updated to cope with product design evolution and updating. However, the uncertainty in future product evolution poses significant challenges to the assembly system configuration design since the higher cost can be incurred if the assembly line suitable for future products is very different from that for the current products. The major challenges include (1) the estimation of reconfiguration cost, (2) unavailability of probability values for possible scenarios of product evolution, and (3) consideration of the impact of the subassembly planning on the task-station assignments. To address these challenges, this paper formulates a concurrent optimization problem to design the assembly system configuration by jointly determining the subassembly planning and task-station assignments considering uncertain product evolution. A new assembly hierarchy similarity model is proposed to estimate the reconfiguration effort by comparing the commonalities among different subassembly plans of current and potential future product designs. The assembly system configuration is chosen by maximizing both assembly hierarchy similarity and assembly system throughput under the worst-case scenario. A case study motivated by real-world scenarios demonstrates the applicability of the proposed method including scenario analysis.
In recent years, haze pollution has become more and more serious in the Yangtze River Delta (YRD). However, the impact mechanism of socio-economic factors on primary particulate matter (PM) emissions remains unclear. Based on the provincial primary PM emission data in the YRD from 1995 to 2014, this paper used Slope, Theil index, and Stochastic Impacts by Regression on Population, Affluence, and Technology (STIAPAT) models to quantitatively identify the regional differences of primary PM emissions and explore the key influencing factors. The results showed that primary fine particulate matter (PM2.5), inhalable particulate (PM10), and total suspended particulate (TSP) emissions all featured an upward trend of fluctuation over the study period. The regional differences in primary TSP emissions in the YRD region was gradually shrinking and the regional differences of primary PM2.5 and PM10 emissions presented a rising trend of fluctuation. The estimated coefficient of population size, energy structure, and fixed assets investment (FAI) were all significantly positive at the level of 1%. The negative effect of economic growth on energy PM emissions was significant under the level of 1%. The increase of foreign direct investment (FDI) had different effects on primary PM2.5, PM10, and TSP emissions. In addition, the influence of energy intensity on primary PM emission from energy consumption are mainly negative but not significant even under the level of 10%. These conclusions have guiding significance for the formulation of PM emission reduction policy without affecting YRD’s economic development.
N-Tosylhydrazones have had widespread application in organic synthesis for more than a half century. In most of cases, N-tosylhydrazones, as masked diazo compounds, have been generally used in a series of important carbon–carbon and carbon–heteroatom bond-forming reactions. This review provides an update on progress in diverse coupling reactions of N-tosylhydrazones since 2012. The examples selected are mainly categorized by metal-catalyzed and metal-free systems, wherein four main types of transformations including insertion, olefination, alkynylation, and cyclization are discussed for each system.1 Introduction2 Transition-Metal-Catalyzed Coupling Reactions3 Metal-Free Coupling Reactions4 Conclusion and Outlook
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.