Objective To analyze the characteristics of global β-lactamase-producing Enterobacter cloacae including the distribution of β-lactamase, sequence types (STs) as well as plasmid replicons. Methods All the genomes of the E. cloacae were downloaded from GenBank. The distribution of β-lactamase encoding genes were investigated by genome annotation after the genome quality was checked. The STs of these strains were analyzed by multi-locus sequence typing (MLST). The distribution of plasmid replicons was further explored by submitting these genomes to the genome epidemiology center. The isolation information of these strains was extracted by Per program from GenBank. Results A total of 272 out of 276 strains were found to carry β-lactamase encoding genes. Among them, 23 varieties of β-lactamase were identified, blaCMH (n = 130, 47.8%) and blaACT (n = 126, 46.3%) were the most predominant ones, 9 genotypes of carbapenem-hydrolyzing β-lactamase (CHβLs) were identified with blaVIM (n = 29, 10.7%) and blaKPC (n = 24, 8.9%) being the most dominant ones. In addition, 115 distinct STs for the 272 ß-lactamase-carrying E. cloacae and 48 different STs for 106 CHβLs-producing E. cloacae were detected. ST873 (n = 27, 9.9%) was the most common ST. Furthermore, 25 different plasmid replicons were identified, IncHI2 (n = 65, 23.9%), IncHI2A (n = 64, 23.5%) and IncFII (n = 62, 22.8%) were the most common ones. Notably, the distribution of plasmid replicons IncHI2 and IncHI2A among CHβLs-producing strains were significantly higher than theat among non-CHβLs-producing strains (p < 0.05). Conclusion Almost all the E. cloacae contained β-lactamase encoding gene. Among the global E. cloacae, blaCMH and blaACT were main blaAmpC genes. BlaTEM and blaCTX-M were the predominant ESBLs. BlaKPC, blaVIM and blaNDM were the major CHβLs. Additionally, diversely distinct STs and different replicons were identified.
ObjectiveTo analyze the molecular epidemiology of carbapenem-resistant Enterobacter cloacae complex (CREC) by whole-genome sequencing and to explore its clinical characteristics.MethodsEnterobacter cloacae complex isolates collected in a tertiary hospital during 2013–2021 were subjected to whole-genome sequencing to determine the distribution of antimicrobial resistance genes (ARGs), sequence types (STs), and plasmid replicons. A phylogenetic tree of the CREC strains was constructed based on the whole-genome sequences to analyze their relationships. Clinical patient information was collected for risk factor analysis.ResultsAmong the 51 CREC strains collected, blaNDM-1 (n = 42, 82.4%) was the main carbapenem-hydrolyzing β-lactamase (CHβL), followed by blaIMP-4 (n = 11, 21.6%). Several other extended-spectrum β-lactamase-encoding genes were also identified, with blaSHV-12 (n = 30, 58.8%) and blaTEM-1B (n = 24, 47.1%) being the predominant ones. Multi-locus sequence typing revealed 25 distinct STs, and ST418 (n = 12, 23.5%) was the predominant clone. Plasmid analysis identified 15 types of plasmid replicons, among which IncHI2 (n = 33, 64.7%) and IncHI2A (n = 33, 64.7%) were the main ones. Risk factor analysis showed that intensive care unit (ICU) admission, autoimmune disease, pulmonary infection, and previous corticosteroid use within 1 month were major risk factors for acquiring CREC. Logistic regression analysis showed that ICU admission was an independent risk factor for CREC acquisition and was closely related with acquiring infection by CREC with ST418.ConclusionBlaNDM-1 and blaIMP-4 were the predominant carbapenem resistance genes. ST418 carrying BlaNDM-1 not only was the main clone, but also circulated in the ICU of our hospital during 2019–2021, which highlights the necessity for surveillance of this strain in the ICU. Furthermore, patients with risk factors for CREC acquisition, including ICU admission, autoimmune disease, pulmonary infection, and previous corticosteroid use within 1 month, need to be closely monitored for CREC infection.
ObjectiveThe worldwide dissemination of colistin-resistant Escherichia coli (E. coli) endangers public health. This study aimed to better understand the global genomic epidemiology of E. coli isolates carrying mobilized colistin resistance (mcr) genes, providing information to assist in infection and prevention.MethodsEscherichia coli genomes were downloaded from NCBI, and mcr was detected using BLASTP. Per software was used to extract information on hosts, resources, collection data, and countries of origin from GenBank. Sequence types (STs), prevalence of plasmids, antimicrobial resistance genes (ARG), and virulence factors (VF) in these genomes were analyzed. Statistical analyses were performed to assess the relationships between mcr, ARGs, plasmids, and STs.ResultsIn total, 778 mcr-positive isolates were identified. Four mcr variants were detected, with mcr-1 (86.1%) being the most widespread, followed by mcr-9 (5.7%), mcr-5 (4.4%), and mcr-3 (3.0%). Multiple ARGs were identified, with blaCTX–M (53.3%), fosA (28.8%), qnr (26.1%), blaNDM (19.8%), and aac (6’)-Ib-cr (14.5%) being the most common. Overall, 239 distinct STs were identified, of which ST10 (13.8%) was the most prevalent. A total of 113 different VFs were found, terC (99.9%) and gad (83.0%) were most frequently detected. Twenty types of plasmids were identified; IncFIB (64.1%), IncX (42.3%), and IncX (42.3%) were the most common replicons. IncI2 and IncX4 were frequently detected in mcr-1-positive isolates, whereas IncFII, IncI1-I, and IncHI2 were dominant plasmids in mcr-3, mcr-5, and mcr-9-positive isolates, respectively. A higher frequency of ARGs and VFs was observed among ST156 and ST131 isolates.ConclusionOur data indicated that more than half of the mcr-positive E. coli strains carried endemic ARGs and VFs. ST10 and ST156 isolates deserved further attention, given the rapid transmission of ST10 and the convergence of ARGs and VFs in ST156.
ObjectiveTo use genomic analysis to identify Acinetobacter spp. and to explore the distribution characteristics of ß-lactamase oxallicinases (blaOXA) among Acinetobacter species globally.MethodsGenomes of global Acinetobacter spp. were downloaded from GenBank using Aspera batch. After quality check using CheckM and QUAST software, the genomes were annotated using Prokka software to investigate the distribution of blaOXAs across Acinetobacter spp.; a phylogenetic tree was constructed to explore the evolutionary relationship among the blaOXA genes in Acinetobacter spp. Average-nucleotide identification (ANI) was performed to re-type the Acinetobacter spp. BLASTN comparison analysis was implemented to determine the sequence type (ST) of Acinetobacter baumannii strain.ResultsA total of 7,853 genomes were downloaded, of which only 6,639 were left for further analysis after quality check. Among them, 282 blaOXA variants were identified from the genomes of 5,893 Acinetobacter spp.; blaOXA-23 (n = 3,168, 53.8%) and blaOXA-66 (2,630, 44.6%) were the most frequent blaOXAs, accounting for 52.6% (3,489/6639), and the co-carriage of blaOXA-23 and blaOXA-66 was seen in 2223 (37.7%) strains. The 282 blaOXA variants were divided into 27 clusters according to the phylogenetic tree. The biggest clade was blaOXA-51-family carbapenem-hydrolyzing enzymes composed of 108 blaOXA variants. Overall, 4,923 A. baumannii were identified out of the 6,639 Acinetobacter spp. strains and 291 distinct STs were identified among the 4,904 blaOXA-carrying A. baumannii. The most prevalent ST was ST2 (n = 3,023, 61.6%) followed by ST1 (n = 228, 4.6%).ConclusionOXA-like carbapenemases were the main blaOXA-type β-lactamase spread widely across Acinetobacter spp. Both blaOXA-23 and blaOXA-66 were the predominant blaOXAs, among all A. baumannii strains, with ST2 (belonging to CC2) being the main clone disseminated globally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.