Background: With the advances in current technology, hand gesture recognition has gained considerable attention. It has been extended to recognize more distinctive movements, such as a signature, in human-computer interaction (HCI) which enables the computer to identify a person in a non-contact acquisition environment. This application is known as in-air hand gesture signature recognition. To our knowledge, there are no publicly accessible databases and no detailed descriptions of the acquisitional protocol in this domain. Methods: This paper aims to demonstrate the procedure for collecting the in-air hand gesture signature’s database. This database is disseminated as a reference database in the relevant field for evaluation purposes. The database is constructed from the signatures of 100 volunteer participants, who contributed their signatures in two different sessions. Each session provided 10 genuine samples enrolled using a Microsoft Kinect sensor camera to generate a genuine dataset. In addition, a forgery dataset was also collected by imitating the genuine samples. For evaluation, each sample was preprocessed with hand localization and predictive hand segmentation algorithms to extract the hand region. Then, several vector-based features were extracted. Results: In this work, classification performance analysis and system robustness analysis were carried out. In the classification analysis, a multiclass Support Vector Machine (SVM) was employed to classify the samples and 97.43% accuracy was achieved; while the system robustness analysis demonstrated low error rates of 2.41% and 5.07% in random forgery and skilled forgery attacks, respectively. Conclusions: These findings indicate that hand gesture signature is not only feasible for human classification, but its properties are also robust against forgery attacks.
Background With the advances in current technology, hand gesture recognition has gained considerable attention. It has been extended to recognize more distinctive movements, such as a signature, in human-computer interaction (HCI) which enables the computer to identify a person in a non-contact acquisition environment. This application is known as in-air hand gesture signature recognition. To our knowledge, there are no publicly accessible databases and no detailed descriptions of the acquisitional protocol in this domain. Methods This paper aims to demonstrate the procedure for collecting the in-air hand gesture signature’s database. This database is disseminated as a reference database in the relevant field for evaluation purposes. The database is constructed from the signatures of 100 volunteer participants, who contributed their signatures in two different sessions. Each session provided 10 genuine samples enrolled using a Microsoft Kinect sensor camera to generate a genuine dataset. In addition, a forgery dataset was also collected by imitating the genuine samples. For evaluation, each sample was preprocessed with hand localization and predictive hand segmentation algorithms to extract the hand region. Then, several vector-based features were extracted. Results In this work, classification performance analysis and system robustness analysis were carried out. In the classification analysis, a multiclass Support Vector Machine (SVM) was employed to classify the samples and 97.43% accuracy was achieved; while the system robustness analysis demonstrated low error rates of 2.41% and 5.07% in random forgery and skilled forgery attacks, respectively. Conclusions These findings indicate that hand gesture signature is not only feasible for human classification, but its properties are also robust against forgery attacks.
Electroencephalogram(EEG)-based authentication has received increasing attention from researchers as they believe it could serve as an alternative to more conventional personal authentication methods. Unfortunately, EEG signals are non-stationary and could be easily contaminated by noise and artifacts. Therefore, further processing of data analysis is needed to retrieve useful information. Various machine learning approaches have been proposed and implemented in the EEG-based domain, with deep learning being the most current trend. However, retaining the performance of a deep learning model requires substantial computational effort and a vast amount of data, especially when the models go deeper to generate consistent results. Deep learning models trained with small data sets from scratch may experience an overfitting issue. Transfer learning becomes an alternative solution. It is a technique to recognize and apply the knowledge and skills learned from the previous tasks to a new domain with limited training data. This study attempts to explore the applicability of transferring various pre-trained models’ knowledge to the EEG-based authentication domain. A self-collected database that consists of 30 subjects was utilized in the analysis. The database enrolment is divided into two sessions, with each session producing two sets of EEG recording data. The frequency spectrums of the preprocessed EEG signals are extracted and fed into the pre-trained models as the input data. Three experimental tests are carried out and the best performance is reported with accuracy in the range of 99.1–99.9%. The acquired results demonstrate the efficiency of transfer learning in authenticating an individual in this domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.