a b s t r a c tThe Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.
The first and second hyperpolarizability beta and gamma are obtained for formaldehyde oligomers (H2CO)n (n = 1-7) using computational methods. We have used the finite field (FF) approach and hyperpolarizability density analysis (HDA) to predict the microscopic first and second nonlinear hyperpolarizability of the formaldehyde oligomers. The spatial contributions of electrons to the hyperpolarizability by using plots of HDA are presented. It has been found from the numerical stability checking of the hyperpolarizability calculations that the calculated values by FF method are more stable than those by HDA approach. The values of beta are zero when n is even as the molecule possesses centrosymmetry, and when n is odd, the differences among beta values are not clear. The gamma values are increased with increase in n.
Micro pattern gaseous detectors have been widely used in position measurements of particle detection in the last two decades. In this work a novel method of track identification and reconstruction was developed for fast neutron detection by MPGD, which in most cases requires a strong rejection of the gamma background. Based on this method, an online tracking system can be built in a FPGA-based Daq system to significantly improve both the capability of counting rate and the spatial resolution. This work also offers a potential usage in future hadron experiments such as SoLID spectrometer in Jeffereson Lab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.