SummaryHBs antigen (HBsAg)183-191 (FLLTRILTI, R187 peptide) is a dominant human leucocyte antigen-A2 (HLA-A2)-restricted epitope associated with hepatitis B virus (HBV) infection in Caucasian populations. However, its prevalence is poorly understood in China, where there is a high incidence of HBV infection. In this report, we sequenced the region of HBsAg derived from 103 Chinese patients. Approximately 16·5% of the patients bore a mutant HBsAg183-191 epitope in which the original arginine (R187) was substituted with a lysine (K187 mutant peptide). Importantly, K187 still bound to HLA-A2 with high affinity, and elicited specific cytotoxic T lymphocyte (CTL) responses in HLA-A2/K b transgenic mice. K187-specific CTLs were also generated successfully in acute hepatitis B (AHB) patients, indicating that this mutant epitope is processed and presented effectively. Our findings show that R187-specific CTLs can cross-react with the K187 peptide. These findings reveal that K187 still has the property of an HLA-A2 restricted epitope, and elicits a protective anti-HBV CTL response in humans.
The cellular proteasomes presumably inhibit the replication of hepatitis B virus (HBV) due to degradation of the viral core protein (HBcAg). Common proteasome inhibitors, however, either enhance or inhibit HBV replication. In this study, the exact degradation process of HBcAg and its influences on HBV replication were further studied using bioinformatic analysis, protease digestion assays of recombinant HBcAg, and proteasome inhibitor treatments of HBV-producing cell line HepG2.2.15. Besides HBcAg and hepatitis B e antigen precursor, common hepatitis B core-related antigens (HBcrAgs), the small and the large degradation intermediates of these HBcrAgs (HBcrDIs), were regularly found in cytosol of HepG2.2.15 cells. Further, the results of investigation reveal that the degradation process of cytosolic HBcrAgs in proteasomes consists of two steps: the limited proteolysis into HBcrDIs by the trypsin-like (TL) activity and the complete degradation of HBcrDIs by the chymotrypsin-like (chTL) activity. Concordantly, HBcrAgs and the large HBcrDI or HBcrDIs (including the small HBcrDI) were accumulated when the TL or chTL activity was inhibited, which generally correlated with enhancement and inhibition of HBV replication, respectively. The small HBcrDI inhibited HBV replication by assembling into the nucleocapsids and preventing the victim particles from being mature enough for envelopment. The two-step degradation manner may highlight some new anti-HBV strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.