In this paper, in order to solve the interface-trap issue and enhance the transconductance induced by high-k dielectric in metal-insulator-semiconductor (MIS) high electron mobility transistors (HEMTs), we demonstrate better performances of recessed-gate Al 2 O 3 MIS-HEMTs which are fabricated by Fluorine-based Si 3 N 4 etching and chlorinebased AlGaN etching with three etching times (15 s, 17 s and 19 s). The gate leakage current of MIS-HEMT is about three orders of magnitude lower than that of AlGaN/GaN HEMT. Through the recessed-gate etching, the transconductance increases effectively. When the recessed-gate depth is 1.02 nm, the best interface performance with τ it =(0.20-1.59) μs and D it =(0.55-1.08)×10 12 cm −2 •eV −1 can be obtained. After chlorine-based etching, the interface trap density reduces considerably without generating any new type of trap. The accumulated chlorine ions and the N vacancies in the AlGaN surface caused by the plasma etching can degrade the breakdown and the high frequency performances of devices. By comparing the characteristics of recessed-gate MIS-HEMTs with different etching times, it is found that a low power chlorine-based plasma etching for a short time (15 s in this paper) can enhance the performances of MIS-HEMTs effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.