Since Darwin's seminal works, the universality of facial expressions of emotion has remained one of the longest standing debates in the biological and social sciences. Briefly stated, the universality hypothesis claims that all humans communicate six basic internal emotional states (happy, surprise, fear, disgust, anger, and sad) using the same facial movements by virtue of their biological and evolutionary origins [Susskind JM, et al. (2008) Nat Neurosci 11:843-850]. Here, we refute this assumed universality. Using a unique computer graphics platform that combines generative grammars [Chomsky N (1965) MIT Press, Cambridge, MA] with visual perception, we accessed the mind's eye of 30 Western and Eastern culture individuals and reconstructed their mental representations of the six basic facial expressions of emotion. Crosscultural comparisons of the mental representations challenge universality on two separate counts. First, whereas Westerners represent each of the six basic emotions with a distinct set of facial movements common to the group, Easterners do not. Second, Easterners represent emotional intensity with distinctive dynamic eye activity. By refuting the long-standing universality hypothesis, our data highlight the powerful influence of culture on shaping basic behaviors once considered biologically hardwired. Consequently, our data open a unique nature-nurture debate across broad fields from evolutionary psychology and social neuroscience to social networking via digital avatars.modeling | reverse correlation | categorical perception | top-down processing | cultural specificity
unfolding, [2] and skin wrinkles communicate a change in the state of the body. [3] These exquisite self-wrinkling processes typically originate from heterogeneous growth rates during the growth process, which results in compressive strains on the constrained tissues or organs and leads to mechanical instability. [5,6] Hydrogels possess water-rich structures similar to the abovementioned biological tissues and are regarded as promising scaffolds in biomedical fields. [7][8][9] Given the importance of wrinkled structures, the similarity between hydrogels and biotissue, and the important role of the programmable structure of hydrogels in potential biomedical applications, [10,11] imitating the delicate architecture of biological tissues in a biocompatible, mechanically stable wrinkled hydrogel with programmable patterns can facilitate an understanding of the effects of surface topography on biological properties and will be of benefit to humanity. In fact, motivated by the distinct functionalities of wrinkled structures in biology, material scientists have attempted to mimic this structure in artificial systems. [12][13][14][15][16][17][18][19] Consequently, a series of strategies, including swelling mismatch, [20] prepatterning treatment, [21] or coating of a second layer on the substrate, [5] have been successfully conducted to generate a compressive strain that triggers a controllable wrinkling Wrinkled hydrogels from biomass sources are potential structural biomaterials. However, for biorelated applications, engineering scalable, structure-customized, robust, and biocompatible wrinkled hydrogels with highly oriented nanostructures and controllable intervals is still a challenge. A scalable biomass material, namely cellulose, is reported for customizing anisotropic, all-cellulose, wrinkle-patterned hydrogels (AWHs) through an ultrafast, auxiliary force, acid-induced gradient dual-crosslinking strategy. Direct immersion of a prestretched cellulose alkaline gel in acid and relaxation within seconds allow quick buildup of a consecutive through-thickness modulus gradient with acid-penetration-directed dual-crosslinking, confirmed by visual 3D Raman microscopy imaging, which drives the formation of selfwrinkling structures. Moreover, guided by quantitative mechanics simulations, the structure of AWHs is found to exhibit programmable intervals and aligned nanostructures that differ between ridge and valley regions and can be controlled by tuning the prestretching strain and acid treatment time, and these AWHs successfully induce cell alignment. Thus, a new avenue is opened to fabricate polysaccharide-derived, programmable, anisotropic, wrinkled hydrogels for use as biomedical materials via a bottom-up method.The ORCID identification number(s) for the author(s) of this article can be found under https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.