We propose a new approach to predict Internet network distance called Global Network Positioning (GNP). This approach models the Internet as a geometric space and distributedly computes geometric coordinates to characterize the positions of hosts in the Internet. By conducting Internet experiments, we show that the geometric distances implied by the GNP host coordinates can accurately predict the Internet network distances.
Drought is a global threat that affects agricultural production. Plants have evolved several adaptive strategies to cope with drought. Stomata are essential structures for plants to control water status and photosynthesis rate. Stomatal closure is an efficient way for plants to reduce water loss and improve survivability under drought conditions. The opening and closure of stomata depend on the turgor pressure in guard cells. Three key signaling molecules, including abscisic acid (ABA), reactive oxygen species (ROS), and calcium ion (Ca2+), play pivotal roles in controlling stomatal closure. Plants sense the water-deficit signal mainly via leaves and roots. On the one hand, ABA is actively synthesized in root and leaf vascular tissues and transported to guard cells. On the other hand, the roots sense the water-deficit signal and synthesize CLAVATA3/EMBRYO-SURROUNDING REGION RELATED 25 (CLE25) peptide, which is transported to the guard cells to promote ABA synthesis. ABA is perceived by pyrabactin resistance (PYR)/PYR1-like (PYL)/regulatory components of ABA receptor (RCAR) receptors, which inactivate PP2C, resulting in activating the protein kinases SnRK2s. Many proteins regulating stomatal closure are activated by SnRK2s via protein phosphorylation. ABA-activated SnRK2s promote apoplastic ROS production outside of guard cells and transportation into the guard cells. The apoplastic H2O2 can be directly sensed by a receptor kinase, HYDROGEN PEROXIDE-INDUCED CA2+ INCREASES1 (HPCA1), which induces activation of Ca2+ channels in the cytomembrane of guard cells, and triggers an increase in Ca2+ in the cytoplasm of guard cells, resulting in stomatal closure. In this review, we focused on discussing the signaling transduction of ABA, ROS, and Ca2+ in controlling stomatal closure in response to drought. Many critical genes are identified to have a function in stomatal closure under drought conditions. The identified genes in the process can serve as candidate genes for genetic engineering to improve drought resistance in crops. The review summarizes the recent advances and provides new insights into the signaling regulation of stomatal closure in response to water-deficit stress and new clues on the improvement of drought resistance in crops.
Cytosolic malate dehydrogenase (MDH) is a key enzyme that regulates the interconversion between malate and oxaloacetate (OAA). However, its role in modulating storage compound accumulation in maize endosperm is largely unknown. Here, we characterized a novel naturally occurring maize mdh4-1 mutant, which produces small, opaque kernels and exhibits reduced starch but enhanced lysine content. Map-based cloning, functional complementation and allelism analyses identified ZmMdh4 as the causal gene. Enzymatic assays demonstrated that ZmMDH4 predominantly catalyses the conversion from OAA to malate. In comparison, the activity of the mutant enzyme, which lacks one glutamic acid (Glu), was completed abolished, demonstrating that the Glu residue was essential for ZmMDH4 function. Knocking down ZmMdh4 in vivo led to a substantial metabolic shift towards glycolysis and a dramatic disruption in the activity of the mitochondrial complex I, which was correlated with transcriptomic alterations. Taken together, these results demonstrate that ZmMdh4 regulates the balance between mitochondrial respiration and glycolysis, ATP production and endosperm development, through a yet unknown feedback regulatory mechanism in mitochondria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.