Abstract.A Geographic Information System (GIS)-based quantitative risk assessment methodology was adopted to evaluate the risks of loose deposits formed by the 2008 Wenchuan earthquake along a highway near the epicenter. A total of 305 loose deposits with a total volume of 4.0 × 10 7 m 3 has been identified. A physical model was used to determine the failure probability of these loose deposits under six rainfall scenarios, assuming the loose deposits as infinite slopes. The calculated probability of rain-induced slope failures is verified by the recorded landslides at the same site during a storm in 2010. Seventy-nine out of the 112 rain-induced loose deposit failures are predicted by the reliability analysis, with an accuracy of 71 %. The results of reliability analysis and information on the consequence of these rain-induced landslides enable the estimation of the annual societal and individual risks of the loose deposits. Under the rainfall scenarios of 30 mm/12 h and 70 mm/12 h, the estimated annual societal risks reach 8.8 and 7.5, respectively, and the individual risks reach 0.05 and 0.04, respectively, which are very high compared with present risk acceptance criteria. The preliminary assessment provides a benchmark for studying the long-term risks of these loose deposits and engineering decision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.