Large crowding events in big cities pose great challenges to local governments since crowd disasters may occur when crowd density exceeds the safety threshold. We develop an optimization model to generate the emergent train stop-skipping schemes during large crowding events, which can postpone the arrival of crowds. A two-layer transportation network, which includes a pedestrian network and the urban metro network, is proposed to better simulate the crowd gathering process. Urban smartcard data is used to obtain actual passenger travel demand. The objective function of the developed model minimizes the passengers’ total waiting time cost and travel time cost under the pedestrian density constraint and the crowd density constraint. The developed model is tested in an actual case of large crowding events occurred in Shenzhen, a major southern city of China. The obtained train stop-skipping schemes can effectively maintain crowd density in its safety range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.