With accelerating urbanization, the regional ecological security pattern (ESP) faces unprecedented threats. The situation is particularly serious in the Loess plateau of China (LPC) due to the fragile ecological environment and poor natural conditions. Constructing an ecological network and optimizing the ESP is significant for guiding regional development and maintaining the stability of the ecological process. This study constructed an ecological security network by integrating the minimum cumulative resistance (MCR) model and morphological spatial-pattern-analysis approach in LPC. Additionally, the optimization scheme of the regional ESP has also been proposed. Results show that the ecological source area is about 57,757.8 km2, 9.13% of the total area, and is mainly distributed in the southeast of the study area. The spatial distribution of ecological sources shows specific agglomeration characteristics. The ecological security network constructed contains 24 main ecological corridors, 72 secondary ecological corridors, and 53 ecological nodes. Referring to the identified ecological sources area, corridors, nodes, and other core components, the “two barriers, five corridors, three zones and multipoint” ESP optimization scheme was presented. This research hopes to provide a valuable reference for constructing the ecological security network and optimizing ecological space in ecologically fragile areas of western China.
Soil erosion has a severe impact on habitat and productivity. It is considered to be a major environmental threat prevalent in ecosystems. However, few researchers have studied the spatial distribution of soil erosion intensity among different geographic environmental factors. The Qin River Basin is a geographical unit consisting of mountains, hills, and plains with significant regional characteristics, and it has a basin area of 14,810.91 km2. This study uses the Geographical Information Systems, Revised Universal Soil Loss Equation model to analyze the spatiotemporal changes in the soil-erosion intensity in the Qin River Basin from 1990 to 2018. Different environmental factors of land use, slope and altitude on erosion intensities of 19 secondary land types were analyzed. It can better reflect the soil erosion under different environmental factors and different land use types. Results show that the soil erosion modulus of Qin River Basin were 10.25 t hm−2 a−1, and it belong to slight erosion from 1990 to 2018. Soil erosion intensity is greater in grassland and woodland than in cropland. The strongest soil erosion occurred in the sparse forestland, and the lowest was in beach land. Soil erosion was the highest for a slope of 15~25° and an altitude of 1200~1500 m. Rainfall and slope are important factors lead to soil erosion, indicating weak water and soil conservation implemented in these areas. Therefore, priority should be given to these geomorphic units to formulate and implement soil-erosion control and ecological restoration policies in the Qin River Basin. This study provides a good reference for preventing and controlling soil erosion in river basins.
Soil erosion is an important global environmental issue that severely affects regional ecological environment and socio-economic development. The Yellow River (YR) is China’s second largest river and the fifth largest one worldwide. Its watershed is key to China’s economic growth and environmental security. In this study, six impact factors, including rainfall erosivity (R), soil erosivity (K), slope length (L), slope steepness (S), cover management (C), and protective measures (P), were used. Based on the revised universal soil loss equation (RUSLE) model, and combined with a geographic information system (GIS), the temporal and spatial distribution of soil erosion (SE) in the YR from 2000 to 2020 was estimated. The patch-generating land use simulation (PLUS) model was used to simulate the land-use and land-cover change (LUCC) under two scenarios (natural development and ecological protection) in 2040; the RUSLE factor P was found to be associated with LUCC in 2040, and soil erosion in the Yellow River Basin (YRB) in 2040 under the two scenarios were predicted and evaluated. This method has great advantages in land-use simulation, but soil erosion is greatly affected by rainfall and slope, and it only focuses on the link between land-usage alteration and SE. Therefore, this method has certain limitations in assessing soil erosion by simulating and predicting land-use change. We found that there is generally slight soil erosivity in the YRB, with the most serious soil erosion occurring in 2000. Areas with serious SE are predominantly situated in the upper reaches (URs), followed by the middle reaches (MRs), and soil erosion is less severe in the lower reaches. Soil erosion in the YRB decreased 11.92% from 2000 to 2020; thus, soil erosion has gradually reduced in this area over time. Based on the GIS statistics, land-use change strongly influences SE, while an increase in woodland area has an important positive effect in reducing soil erosion. By predicting land-use changes in 2040, compared to the natural development scenario, woodland and grassland under the ecological protection scenario can be increased by 1978 km2 and 2407 km2, respectively. Soil erosion can be decreased by 6.24%, indicating the implementation of woodland and grassland protection will help reduce soil erosion. Policies such as forest protection and grassland restoration should be further developed and implemented on the MRs and URs of the YR. Our research results possess important trend-setting significance for soil erosion control protocols and ecological environmental protection in other large river basins worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.