A key question in the design of engineered competitive systems has been that of the efficiency loss of the associated equilibria. Yet, there is little known in this regard in the context of stochastic dynamic games, particularly in a large population regime. In this paper, we revisit a class of noncooperative games, arising from the synchronization of a large collection of heterogeneous oscillators. In [31], we derived a PDE model for analyzing the associated equilibria in large population regimes through a mean field approximation. Here, we examine the efficiency of the associated mean-field equilibria with respect to a related welfare optimization problem. We construct constrained variational problems both for the noncooperative game and its centralized counterpart and derive the associated nonlinear eigenvalue problems. A relationship between the solutions of these eigenvalue problems is observed and allows for deriving an expression for efficiency loss. By applying bifurcation analysis, a local bound on efficiency loss is derived under an assumption that oscillators share the same frequency. Through numerical case studies, the analytical statements are supported in the homogeneous frequency regime; analogous numerical results are provided for the heterogeneous frequency regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.