The Moon is the only celestial body that human beings have visited. The design of the Earth-Moon transfer orbits is a critical issue in lunar exploration missions. In the 21st century, new lunar missions including the construction of the lunar space station, the permanent lunar base, and the Earth-Moon transportation network have been proposed, requiring low-cost, expansive launch windows and a fixed arrival epoch for any launch date within the launch window. The low-energy and low-thrust transfers are promising strategies to satisfy the demands. This review provides a detailed landscape of Earth-Moon transfer trajectory design processes, from the traditional patched conic to the state-of-the-art low-energy and low-thrust methods. Essential mechanisms of the various utilized dynamic models and the characteristics of the different design methods are discussed in hopes of helping readers grasp the basic overview of the current Earth-Moon transfer orbit design methods and a deep academic background is unnecessary for the context understanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.