Nitrogen-enriched mesoporous carbons with tunable nitrogen content and similar mesoporous structures have been prepared by a facile colloid silica nanocasting to house sulfur for lithium-sulfur batteries. The results give unequivocal proof that nitrogen doping could assist mesoporous carbon to suppress the shuttling phenomenon, possibly via an enhanced surface interaction between the basic nitrogen functionalities and polysulfide species. However, nitrogen doping only within an appropriate level can improve the electronic conductivity of the carbon matrix. Thus, the dependence of total electrochemical performance on the nitrogen content is nonmonotone. At an optimal nitrogen content of 8.1 wt %, the carbon/sulfur composites deliver a highest reversible discharge capacity of 758 mA h g(-1) at a 0.2 C rate and 620 mA h g(-1) at a 1 C rate after 100 cycles. Furthermore, with the assistance of PPy/PEG hybrid coating, the composites could further increase the reversible capacity to 891 mA h g(-1) after 100 cycles. These encouraging results suggest nitrogen doping and surface coating of the carbon hosts are good strategies to improve the performance carbon/sulfur-based cathodes for lithium-sulfur batteries.
Objectives To estimate neuropathic sign/symptom rates with initiation of combination antiretroviral therapy (cART) in HIV-infected ART-naive patients, and to investigate risk factors for: peripheral neuropathy and symptomatic peripheral neuropathy (SPN), recovery from peripheral neuropathy/SPN after neurotoxic ART (nART) discontinuation, and the absence of peripheral neuropathy/SPN while on nART. Design AIDS Clinical Trials Group (ACTG) Longitudinal Linked Randomized Trial participants who initiated cART in randomized trials for ART-naive patients were annually screened for symptoms/signs of peripheral neuropathy. ART use and disease characteristics were collected longitudinally. Methods Peripheral neuropathy was defined as at least mild loss of vibration sensation in both great toes or absent/hypoactive ankle reflexes bilaterally. SPN was defined as peripheral neuropathy and bilateral symptoms. Generalized estimating equation logistic regression was used to estimate associations. Results Two thousand, one hundred and forty-one participants were followed from January 2000 to June 2007. Rates of peripheral neuropathy/SPN at 3 years were 32.1/8.6% despite 87.1% with HIV-1RNA 400 copies/ml or less and 70.3% with CD4 greater than 350 cells/µl. Associations with higher odds of peripheral neuropathy included older patient age and current nART use. Associations with higher odds of SPN included older patient age, nART use, and history of diabetes mellitus. Associations with lower odds of recovery after nART discontinuation included older patient age. Associations with higher odds of peripheral neuropathy while on nART included older patient age and current protease inhibitor use. Associations with higher odds of SPN while on nART included older patient age, history of diabetes, taller height, and protease inhibitor use. Conclusion Signs of peripheral neuropathy remain despite virologic/immunologic control but frequently occurs without symptoms. Aging is a risk factor for peripheral neuropathy/SPN.
Nitrogen-doped mesoporous carbons (NMCs) with controllable nitrogen doping and similar mesoporous structures are prepared by a facile colloidal silica nanocasting method using melamine, phenol, and formaldehyde as precursors. Various physicochemical properties, such as the oxidation stability, the conductivity and the electrochemical capacitive performance, the CO 2 adsorption, the basicity, and the metal-free catalytic activity of the NMCs, are studied extensively in relation to the incorporation amount of nitrogen in the carbon backbone. The dependence of the oxidation stability and the conductivity of the NMCs on the nitrogen content are similar; both of the biggest improvements are achieved at a low nitrogen content of ca. 4.2 wt %. While used as the supercapacitor electrodes, the NMCs with a mediate nitrogen content of ca. 8 wt % can take full advantage of the nitrogen-induced pseudocapacitance and the nitrogen-enhanced conductivity, delivering an excellent high-rate capacitive performance. The nitrogen content does not play an important role in the CO 2 physical adsorption, where the effect of microporosity prevails over the nitrogen-doped carbon surface. However, the nitrogen content determines the basicity of the NMCs, which governs their CO 2 chemical adsorption ability and the metal-free catalytic activity for direct oxidation of H 2 S. The higher the nitrogen content, the higher the basicity and the catalytic activity. Our studies give a reliable relationship between nitrogen doping and the physicochemical properties of mesoporous carbons, which should provide a useful guide to their practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.