Small conductance Ca2+ -activated K+ (SK) channels play a prominent role in modulating the spontaneous activity of dopamine (DA) neurons as well as their response to synaptically-released glutamate. SK channel gating is dependent on Ca2+ binding to constitutively bound calmodulin, which itself is subject to endogenous and exogenous modulation. In the present study, patch-clamp recording techniques were used to examine the relationship between the apparent Ca2+ affinity of cloned SK3 channels expressed in cultured human embryonic kidney 293 cells and the excitability of DA neurons in slices from rat substantia nigra using the positive and negative SK channel modulators, 6,7-dichloro-1H-indole-2,3-dione-3-oxime and R-N-(benzimidazol-2-yl)-1,2,3,4-tetrohydro-1-naphtylamine. Increasing the apparent Ca2+ affinity of SK channels decreased the responsiveness of DA neurons to depolarizing current pulses, enhanced spike frequency adaptation and slowed spontaneous firing, effects attributable to an increase in the amplitude and duration of an apamin-sensitive afterhyperpolarization. In contrast, decreasing the apparent Ca2+ affinity of SK channels enhanced DA neuronal excitability and changed the firing pattern from a pacemaker to an irregular or bursting discharge. Both the reduction in apparent Ca2+ affinity and the bursting associated with negative SK channel modulation were gradually surmounted by co-application of the positive SK channel modulator. These results underscore the importance of SK channels in ‘tuning’ the excitability of DA neurons and demonstrate that gating modulation, in a manner analogous to physiological regulation of SK channels in vivo, represents a means of altering the response of DA neurons to membrane depolarization.
Bursting activity by midbrain dopamine neurons reflects the complex interplay between their intrinsic pacemaker activity and synaptic inputs. Although the precise mechanism responsible for the generation and modulation of bursting in vivo has yet to be established, several ion channels have been implicated in the process. Previous studies with nonselective blockers suggested that ether-a-go-go-related gene (ERG) K+ channels are functionally significant. Here, electrophysiology with selective chemical and peptide ERG channel blockers (E-4031 and rBeKm-1) and computational methods were used to define the contribution made by ERG channels to the firing properties of midbrain dopamine neurons in vivo and in vitro. Selective ERG channel blockade increased the frequency of spontaneous activity as well as the response to depolarizing current pulses without altering spike frequency adaptation. ERG channel block also accelerated entry into depolarization inactivation during bursts elicited by virtual NMDA receptors generated with the dynamic clamp, and significantly prolonged the duration of the sustained depolarization inactivation that followed pharmacologically evoked bursts. In vivo, somatic ERG blockade was associated with an increase in bursting activity attributed to a reduction in doublet firing. Taken together, these results show that dopamine neuron ERG K+ channels play a prominent role in limiting excitability and in minimizing depolarization inactivation. As the therapeutic actions of antipsychotic drugs are associated with depolarization inactivation of dopamine neurons and blockade of cardiac ERG channels is a prominent side effect of these drugs, ERG channels in the central nervous system may represent a novel target for antipsychotic drug development.
Blocking the small-conductance (SK) calcium-activated potassium channel promotes burst firing in dopamine neurons both in vivo and in vitro. In vitro, the bursting is unusual in that spiking persists during the hyperpolarized trough and frequently terminates by depolarization block during the plateau. We focus on the underlying plateau potential oscillation generated in the presence of both apamin and TTX, so that action potentials are not considered. We find that although the plateau potentials are mediated by a voltage-gated Ca(2+) current, they do not depend on the accumulation of cytosolic Ca(2+), then use a computational model to test the hypothesis that the slowly voltage-activated ether-a-go-go-related gene (ERG) potassium current repolarizes the plateaus. The model, which includes a material balance on calcium, is able to reproduce the time course of both membrane potential and somatic calcium concentration, and can also mimic the induction of plateau potentials by the calcium chelator BAPTA. The principle of separation of timescales was used to gain insight into the mechanisms of oscillation and its modulation using nullclines in the phase space. The model predicts that the plateau will be elongated and ultimately result in a persistent depolarization as the ERG current is reduced. This study suggests that the ERG current may play a role in burst termination and the relief of depolarization block in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.