Efficient synthesis of poly(enamine)s has been a great challenge because of their poor stability, poor solubility, and low molecular weights. In this work, a spontaneous amino-yne click polymerization for the efficient preparation of poly(enamine)s was established, which could proceed with 100% atom efficiency under very mild conditions without any external catalyst. Through systematic optimization of the reaction conditions, several soluble and thermally stable poly(β-aminoacrylate)s with high molecular weights (M up to 64400) and well-defined structures were obtained in excellent yields (up to 99%). Moreover, the polymerization can perform in a regio- and stereospecific fashion. Nuclear magnetic resonance spectra analysis revealed that solely anti-Markovnikov additive products with 100% E-isomer were obtained. The reaction mechanism was well demonstrated with the assistance of density functional theory calculations. In addition, by introducing the tetraphenylethene moiety, the resulting polymers exhibit unique aggregation-induced emission characteristics and could be applied in explosives detection and bioimaging. This polyhydroamination is a new type of click polymerization and opens up enormous opportunities for preparing functional polymeric materials.
Fluorescence-imaging-guided photodynamic therapy has emerged as a promising protocol for cancer theranostics. However, facile preparation of such a theranostic material for simultaneously achieving bright emission with long wavelength, high-performance reactive oxygen species (ROS) generation, and good targeting-specificity of cancer cells, is highly desirable but remains challenging. In this study, a novel type of far-red/near-infrared-emissive fluorescent molecules with aggregation-induced emission (AIE) characteristics is synthesized through a few steps reaction. These AIE luminogens (AIEgens) possess simple structures, excellent photostabilities, large Stokes shifts, bright emission, and good biocompatibilities. Meanwhile, their ROS generation is extremely efficient with up to 90.7% of ROS quantum yield, which is far superior to that of some popularly used photosensitizers. Importantly, these AIEgens are able to selectively target and ablate cancer cells over normal cells without the aid of any extra targeting ligands. Rather than using laser light, one of the presented AIEgens (MeTTPy) shows a remarkable tumor-targeting photodynamic therapeutic effect by using an ultralow-power lamp light (18 mW cm ). This study thus not only extends the applications scope of AIEgens, but also offers useful insights into designing a new generation of cancer theranostics.
Background
The extracellular matrix (ECM) is essential for malignant tumour progression, as it is a physical barrier to various kinds of anticancer therapies. Matrix metalloproteinase (MMPs) can degrade almost all ECM components, and macrophages are an important source of MMPs. Studies using macrophages to treat tumours have shown that macrophages can enter tumour tissue to play a regulatory role.
Methods
We modified macrophages with a designed chimeric antigen receptor (CAR), which could be activated after recognition of the tumour antigen HER2 to trigger the internal signalling of CD147 and increase the expression of MMPs.
Results
Although CAR-147 macrophage treatment did not affect tumour cell growth in vitro compared with control treatment. However, we found that the infusion of CAR-147 macrophages significantly inhibited HER2-4T1 tumour growth in BALB/c mice. Further investigation showed that CAR-147 macrophages could reduce tumour collagen deposition and promote T-cell infiltration into tumours, which were consistent with expectations. Interestingly, the levels of the inflammatory cytokines TNF-α and IL-6, which are key factors in cytokine release syndrome, were significantly decreased in the peripheral blood in CAR-147 macrophage-transfused mice.
Conclusion
Our data suggest that targeting the ECM by engineered macrophages would be an effective treatment strategy for solid tumours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.