Aim: To investigate whether strontium ranelate (SR), a new antiosteoporotic agent, could attenuate cartilage degeneration and subchondral bone remodeling in osteoarthritis (OA). Methods: Medial meniscal tear (MMT) operation was performed in adult SD rats to induce OA. SR (625 or 1800 mg·kg -1 ·d -1 ) was administered via gavage for 3 or 6 weeks. After the animals were sacrificed, articular cartilage degeneration was evaluated using toluidine blue O staining, SOX9 immunohistochemistry and TUNEL assay. The changes in microarchitecture indices and tissue mineral density (TMD), chemical composition (mineral-to-collagen ratio), and intrinsic mechanical properties of the subchondral bones were measured using micro-CT scanning, confocal Raman microspectroscopy and nanoindentation testing, respectively. Results: The high-dose SR significantly attenuated cartilage matrix and chondrocyte loss at 6 weeks, and decreased chondrocyte apoptosis, improved the expression of SOX9, a critical transcription factor responsible for the expression of anabolic genes type II collagen and aggrecan, at both 3 and 6 weeks. Meanwhile, the high-dose SR also significantly attenuated the subchondral bone remodeling at both 3 and 6 weeks, as shown by the improved microarchitecture indices, TMD, mineral-to-collagen ratio and intrinsic mechanical properties. In contrast, the low-dose SR did not significantly change all the detection indices of cartilage and bone at both 3 and 6 weeks. Conclusion: The high-dose SR treatment can reduce articular cartilage degeneration and subchondral bone remodeling in the rat MMT model of OA.
Aim: To investigate whether the stage of osteoarthritis (OA) progression influenced the efficacy of the third-generation bisphosphonate zoledronic acid in a rat medial meniscal tear model. Methods: Medial meniscal tear (MMT) was surgically induced in adult male Sprague Dawley rats. Zoledronic acid (ZOL, 100 μg/kg, sc, twice a week) was administered starting immediately, early (from 4 weeks) or late (from 8 weeks) after OA induction. The degeneration of articular cartilage was evaluated with toluidine blue O staining. Subchondral bone remodeling was evaluated with X-ray micro-CT scanning. Joint pain was measured with respect to weight-bearing asymmetry. Calcitonin gene-related peptide (CGRP) expression in dorsal root ganglia (DRGs) was examined using immunofluorescence analysis. The afferent neurons in DRGs innervating the joint were identified by retrograde labeling with fluorogold. Results: Progressive cartilage loss was observed during 12 weeks after OA induction. Subchondral bone remodeling manifested as increased bone resorption at early stage (4 weeks), but as increased bone accretion at advanced stages (8 weeks). Immediately and early ZOL administration significantly improved subchondral microstructural parameters, attenuated cartilage degeneration, reduced weight-bearing asymmetry and CGRP expression, whereas the late ZOL administration had no significant effects. Conclusion: The stage of OA progression influences the efficacy of ZOL in treating joint degeneration and pain. To obtain the maximum efficacy, bisphosphonate treatment should be initiated in rat with early stages of OA pathogenesis.
Pearl/calcium sulfate (pearl/CaSO4) composite scaffolds were successfully fabricated by 3D printing with a hydration process, and showed enhanced physicochemical and biological properties for bone regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.