Bladder cancer (BC) is a heterogeneous disease, and pyrroline-5-carboxylate reductase 1 (PYCR1) can promote the proliferation and invasion of BC cells and accelerate BC progression. In the present study, si-PYCR1 was loaded into bone marrow mesenchymal stem cell (BMSC)-derived exosomes (Exos) in BC. First, PYCR1 levels in BC tissues/cells were assessed, and cell proliferation, invasion, and migration were evaluated. Aerobic glycolysis levels (glucose uptake, lactate production, ATP production, and the expression of relevant enzymes) and the EGFR/PI3K/AKT pathway phosphorylation levels were determined. PYCR1-EGFR interactions were examined by co-immunoprecipitation experiments. RT4 cells transfected with oe-PYCR1 were treated with EGFR inhibitor CL-387785. Exos were loaded with si-PYCR1 and identified, followed by an assessment of their effects on aerobic glycolysis and malignant cell behaviors. Nude mouse models of xenograft tumors were established by injecting mice with Exo-si-PYCR1 and Exo-si-PYCR1. PYCR1 was upregulated in BC cells, with the highest expression observed in T24 cells and the lowest expression in RT4 cells. Following PYCR1 knockdown, the malignant behaviors of T24 cells and aerobic glycolysis were decreased, while PYCR1 overexpression in RT4 cells averted these trends. PYCR1 interacted with EGFR, and CL-387785 inhibited the EGFR/PI3K/AKT pathway and attenuated the effects of PYCR1 overexpression on RT4 cells but had no effect on PYCR1 expression. Exo-si-PYCR1 showed stronger inhibitory effects on aerobic glycolysis and on the malignant behaviors of T24 cells than si-PYCR1. Exo-si-PYCR1 blocked xenograft tumor growth and had good biocompatibility. Briefly, PYCR1 knocking loaded by BMSC-derived Exos suppressed aerobic glycolysis and BC growth via the PI3K/AKT pathway by binding to EGFR.
Abnormal activation of signal transducer and activator of transcription 3 (STAT3) has been found in various types of human cancers, including bladder cancer (BC). In our study, we examined the regulation of STAT3 posttranslational modifications (PTMs) and found that SENP3 is high in bladder cancer. Sentrin/SUMO-specific protease3 (SENP3) and STAT3 were highly expressed in BC tissues when compared with tissue adjacent to carcinoma. SENP3 induced STAT3 protein level and p-STAT3 translocating into nuclear through deSUMOylation of STAT3. Further, nuclear STAT3, as a transcriptional activity factor, promoted pyrroline-5-carboxylate reductase 1 PYCR1 gene and protein level by interacting with the promoter of (PYCR1). Next, we found that knockdown of PYCR1 inhibited Epithelial to mesenchymal transition of bladder cancer, and simultaneously mitigated the carcinogenic effects of STAT3. In vitro, STAT3 knockdown in bladder cancer cells inhibited cell proliferation, migration, and invasion. In contrast, SENP3 overexpression reversed these effects. In all, results lend novel insights into the regulation of STAT3, which has key roles in bladder cancer progression.
Abnormal activation of signal transducer and activator of transcription 3 (STAT3) has been found in various types of human cancers, including bladder cancer (BC). In our study, we examined the regulation of STAT3 post-translational modifications (PTMs) and found that SENP3 is high in bladder cancer. SENP3 and STAT3 were highly expressed in BC tissues when compared with tissue adjacent to carcinoma. SENP3 induced STAT3 protein level and p-STAT3 translocating into nuclear through deSUMOylation of STAT3. Further, nuclear STAT3, as a transcriptional activity factor, promoted pyrroline-5-carboxylate reductase 1 PYCR1 gene and protein level by interacting with the promoter of (PYCR1). Next, we found that knockdown of PYCR1 inhibited Epithelial to mesenchymal transition of bladder cancer, and simultaneously mitigated the carcinogenic effects of STAT3. In vitro, STAT3 knockdown in bladder cancer cells inhibited cell proliferation, migration, and invasion. In contrast, SENP3 overexpression reversed these effects. In all, results lend novel insights into the regulation of STAT3, which has key roles in bladder cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.