The patients with chronic HBV infection have the defective function and immature phenotype of dendritic cells, which may be associated with the inability of efficient presentation of HBV antigens to host immune system for the clearance of HBV.
In this study, oxidative and DNA damage were measured synchronously after Sprague-Dawley rats were exposed to different dosages of tributyltin (TBT) for 3 and 7 consecutive days. Oxidative damage was measured by analyzing the production of hepatic reactive oxygen species (ROS), the activity of superoxide dismutase (SOD), and the content of malondialdehyde (MDA). DNA damage was measured by single-cell gel electrophoresis (comet assay). After 3 days of exposure, significant differences in ROS production could only be seen between the control and the highest dosage group (10 mg/kg BW d), although after 7 days of treatment, ROS production increased in a dose-dependent manner. SOD activity increased with dosage after 3 days of exposure and decreased with dosage after 7 days of exposure. TBT also induced significant production of MDA after 7 days of exposure. The changes in ROS, SOD, and MDA found in this study suggest that the antioxidative systems of rats were activated by TBT in the first 3 days of exposure but had become exhausted by 7 days of exposure. In the comet assay, the number of cells with damaged DNA in rats treated with TBT increased with dosage of TBT. The most likely mechanism of the DNA breakage induced by TBT is oxidative damage. It can be concluded that exposure of TBT can promote both oxidative and DNA damage in mammals in vivo.
Optical activity, known as optical rotation, has found many applications ranging from optical isolators and concentration determination to sophisticated organic structure analysis. Miniaturization and integration are two continuing trends in the production of photonic devices. However, there are fundamental or technical challenges to further reduce the thickness of the optical elements to generate desirable polarization rotation with broadband and high efficiency. Here, in this paper, an efficient method to realize optical rotation for the visible and near infrared light is experimentally demonstrated using an ultrathin metasurface. The polarization rotation originates from the additional phase difference between the two circular polarizations induced by the rectangular metasurface phase grating. Benefiting from the advantages of the reflective metasurface, the fabricated highly efficient device can operate in the broadband. Good agreement between the designed rotation angle and measured results renders this technique very attractive for practical applications in device miniaturization and system integration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.