Aqueous Zn ion batteries are receiving tremendous attention owing to their attractive features with respect to safety, cost, and scalability, yet their lifespan is severely limited by the poor reversibility of the Zn metal anode. Thereby, an artificial solid electrolyte interphase (ASEI) based on an anionic metal−organic framework (MOF) is in situ fabricated on the surface of Zn anodes. The robust ASEI protects the anode from side reactions and largely promotes its Coulombic efficiency during battery cycling. Owing to the high intrinsic Zn 2+ conductivity and abundant zincophilic sites, it also facilitates enhanced Zn redox activities. More interestingly, the consecutive sulfonate groups in the MOF channels guide rapid and directional transport of Zn ions and thus endow a dendrite-free Zn plating/stripping lifespan of 5700 h at 2 mA cm −2 . This work provides a fresh strategy to promote the performance of Zn and even other metallic anodes toward practical battery applications.
Solar energy is a green and sustainable clean energy source. Its rational use can alleviate the energy crisis and environmental pollution. Directly converting solar energy into heat energy is the most efficient method among all solar conversion strategies. Recently, various environmental and energy applications based on nanostructured photothermal materials stimulated the re-examination of the interfacial solar energy conversion process. The design of photothermal nanomaterials is demonstrated to be critical to promote the solar-to-heat energy conversion and the following physical and chemical processes. This review introduces the latest photothermal nanomaterials and their nanostructure modulation strategies for environmental (seawater evaporation) and catalytic (C1 conversion) applications. We present the research progress of photothermal seawater evaporation based on two-dimensional and three-dimensional porous materials. Then, we describe the progress of photothermal catalysis based on layered double hydroxide derived nanostructures, hydroxylated indium oxide nanostructures, and metal plasmonic nanostructures. Finally, we present our insights concerning the future development of this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.