Originating from "rocking-chair concept", lithium-ion batteries (LIBs) have become one of the most important electrochemical energy storage technologies, which have largely impacted our daily life. The utilization of electrolyte additives in small quantities (≤5% by wt or vol) has been long viewed as an economical and efficient approach to regulate the properties of electrolyte and electrode-electrolyte interphases and consequently improve the cycling performance of LIBs. Among all the kinds of electrolyte additives, sulfur-containing compounds have gained significant attention due to their unique features in building stable electrode-electrolyte interphases and protect battery cells from overcharging. In this work, advances and progresses of sulfur-containing additives used in LIBs are overviewed, with special attention paid to the working mechanisms of these electrolyte additives. Particularly, four representative sulfur-containing compounds (i.e., 1,3-propane sultone, prop-1-ene-1,3-sultone, 1,3,2-dioxathiolane-2,2-dioxide, and ethylene sulfite) are comparatively discussed concerning their impact on electrode-electrolyte interphases and cell performances. Future work on the development of sulfur-containing compounds as functional electrolyte additives is also provided. The present review is anticipated to be not only a base document to access the status quo in this research domain but also a guideline to select specialized additives and electrolytes for practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.