Abstract:The fractional-order hyperchaotic Lorenz system is solved as a discrete map by applying the Adomian decomposition method (ADM). Lyapunov Characteristic Exponents (LCEs) of this system are calculated according to this deduced discrete map. Complexity of this system versus parameters are analyzed by LCEs, bifurcation diagrams, phase portraits, complexity algorithms. Results show that this system has rich dynamical behaviors. Chaos and hyperchaos can be generated by decreasing fractional order q in this system. It also shows that the system is more complex when q takes smaller values. SE and C 0 complexity algorithms provide a parameter choice criteria for practice applications of fractional-order chaotic systems. The fractional-order system is implemented by digital signal processor (DSP), and a pseudo-random bit generator is designed based on the implemented system, which passes the NIST test successfully.
By adopting Adomian decomposition method, the fractional-order simplified Lorenz system is solved and implemented on a digital signal processor (DSP). The Lyapunov exponent (LE) spectra of the system is calculated based on QR-factorization, and it accords well with the corresponding bifurcation diagrams. We analyze the influence of the parameter and the fractional derivative order on the system characteristics by color maximum LE (LEmax) and chaos diagrams. It is found that the smaller the order is, the larger the LEmax is. The iteration step size also affects the lowest order at which the chaos exists. Further, we implement the fractional-order simplified Lorenz system on a DSP platform. The phase portraits generated on DSP are consistent with the results that were obtained by computer simulations. It lays a good foundation for applications of the fractional-order chaotic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.