A new type of labyrinth seal with semi-Y of rotor teeth (SYLS) is proposed in this paper. The rationality and accuracy of the numerical model are validated by the experimental results, and the static characteristics are investigated. Furthermore, the effects of pressure drop, rotation speed, tilt angle, and tip clearance on the dynamic coefficients and stability are also studied in detail. The results imply that the novel SYLS structure generally has better leakage and stability performance compared with the traditional labyrinth seal. The maximum error applied in the numerical simulation is only 2.81%, and the worst leakage occurs when the tilt angle is 70° for the SYLS structure due to the smaller vortex dissipation. Moreover, the novel SYLS structure shows the best stability when the tilt angle is 45°. The novel SYLS structure and corresponding results can provide a reference for the research and design for labyrinth seal and the application of centrifugal pump.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.