The mechanism and dynamics of photoinduced charge separation and charge recombination have been investigated in synthetic DNA hairpins possessing donor and acceptor stilbenes separated by one to seven A:T base pairs. The application of femtosecond broadband pump-probe spectroscopy, nanosecond transient absorption spectroscopy, and picosecond fluorescence decay measurements permits detailed analysis of the formation and decay of the stilbene acceptor singlet state and of the charge-separated intermediates. When the donor and acceptor are separated by a single A:T base pair, charge separation occurs via a single-step superexchange mechanism. However, when the donor and acceptor are separated by two or more A:T base pairs, charge separation occurs via a multistep process consisting of hole injection, hole transport, and hole trapping. In such cases, hole arrival at the electron donor is slower than hole injection into the bridging A-tract. Rate constants for charge separation (hole arrival) and charge recombination are dependent upon the donor-acceptor distance; however, the rate constant for hole injection is independent of the donor-acceptor distance. The observation of crossover from a superexchange to a hopping mechanism provides a "missing link" in the analysis of DNA electron transfer and requires reevaluation of the existing literature for photoinduced electron transfer in DNA.
Whole scheme of things: The kinetics and efficiency of photoinduced hole transport across DNA A tracts with 1–7 base pairs have been determined from femtosecond transient absorption spectroscopic data. These values are strongly distance dependent over the first four base pairs, but are relatively insensitive to distance at longer distances. These kinetic results (□, ▪) parallel the DNA‐strand‐cleavage results of Giese et al. (○, •).
The mechanism and dynamics of charge separation and charge recombination in synthetic DNA hairpins possessing a stilbenedicarboxamide linker and a single guanine-cytosine base pair have been reinvestigated. The combination of femtosecond broad-band pump probe spectroscopy, nanosecond transient absorption experiments, and picosecond fluorescence decay measurements permits analysis of the formation and decay of the stilbene anion radical. Reversible hole injection resulting in the formation of the stilbene-adenine contact radical ion pair is found to occur on the picosecond time scale. The mechanism for charge separation across two or more base pairs is revised from single step superexchange to a multi-step process: hole injection followed by hole transport and hole trapping. The mechanism of charge recombination remains assigned to a superexchange process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.