Artificial intelligence is widely applied to automate Diabetic retinopathy diagnosis. Diabetes-related retinal vascular disease is one of the world’s most common leading causes of blindness and vision impairment. Therefore, automated DR detection systems would greatly benefit the early screening and treatment of DR and prevent vision loss caused by it. Researchers have proposed several systems to detect abnormalities in retinal images in the past few years. However, Diabetic Retinopathy automatic detection methods have traditionally been based on hand-crafted feature extraction from the retinal images and using a classifier to obtain the final classification. DNN (Deep neural networks) have made several changes in the previous few years to assist overcome the problem mentioned above. We suggested a two-stage novel approach for automated DR classification in this research. Due to the low fraction of positive instances in the asymmetric Optic Disk (OD) and blood vessels (BV) detection system, preprocessing and data augmentation techniques are used to enhance the image quality and quantity. The first step uses two independent U-Net models for OD (optic disc) and BV (blood vessel) segmentation. In the second stage, the symmetric hybrid CNN-SVD model was created after preprocessing to extract and choose the most discriminant features following OD and BV extraction using Inception-V3 based on transfer learning, and detects DR by recognizing retinal biomarkers such as MA (microaneurysms), HM (hemorrhages), and exudates (EX). On EyePACS-1, Messidor-2, and DIARETDB0, the proposed methodology demonstrated state-of-the-art performance, with an average accuracy of 97.92%, 94.59%, and 93.52%, respectively. Extensive testing and comparisons with baseline approaches indicate the efficacy of the suggested methodology.
This paper demonstrates an improved version of the Salp Swarm Algorithm (SSA) to solve the problems of slow convergence and local minima of the original version. In the population initialization of this scheme, ten chaotic searches with dynamic inertia coefficients are introduced to increase the diversity so that the probability of being trapped in local minima is reduced. Genetic algorithms are then applied to improve the global search ability and convergence speed. The experiments with 12 test functions show that the improved version achieves better accuracy and convergence speed over the original SSA. In the test with robot path planning problem, the proposed algorithm shows improved performance in the average number of iterations, path length, and average number of turns by 69.2%, 19.1%, and 43%, respectively, compared with the original SSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.