Catalytic steam reforming of tar is considered to be an attractive pathway for tar removal and H 2 production in the modern world. In this study, activation of biochar (B) from pine wood pyrolysis was performed to boost its specific surface area and pore structure. The activated biochar (AB) was used as a catalyst support with the aim to enhance the catalytic activity. The catalytic reforming performance of toluene over Ni/AB catalyst was investigated, and the catalytic behavior of Ni/AB catalysts was compared with Ni/Al 2 O 3 and Ni/B. The effect of potassium hydroxide (KOH) to biochar ratio, Ni loading, reforming temperature, weight hourly space velocity and steam to carbon ratio(S/C) on the performance of Ni/AB catalysts were studied. The results showed that Ni/AB catalysts exhibited a superior catalytic activity for carbon conversion and H 2 production to Ni/B and Ni/Al 2 O 3 catalysts. In addition, high carbon conversion (86.2%) and H 2 production (64.3%) can be achieved with Ni/AB catalyst under the optimal operating conditions. Furthermore, in order to improve the stability of the Ni/AB catalyst, Ce was introduced to Ni/AB catalyst. According to stability tests, the H 2 concentration of Ni-Ce/AB catalysts was still higher than 2.24 mmol/min even after 20 hours reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.