Communicated by A. Jamie CuticchiaWe describe a revised and expanded database on human intermediate filament proteins, a major component of the eukaryotic cytoskeleton. The family of 70 intermediate filament genes (including those encoding keratins, desmins, and lamins) is now known to be associated with a wide range of diverse diseases, at least 72 distinct human pathologies, including skin blistering, muscular dystrophy, cardiomyopathy, premature aging syndromes, neurodegenerative disorders, and cataract. To date, the database catalogs 1,274 manually-curated pathogenic sequence variants and 170 allelic variants in intermediate filament genes from over 459 peer-reviewed research articles. Unrelated cases were collected from all of the six sequence homology groups and the sequence variations were described at cDNA and protein levels with links to the related diseases and reference articles. The mutations and polymorphisms are presented in parallel with data on protein structure, gene, and chromosomal location and basic information on associated diseases. Detailed statistics relating to the variants records in the database are displayed by homology group, mutation type, affected domain, associated diseases, and nucleic and amino acid substitutions. Multiple sequence alignment algorithms can be run from queries to determine DNA or protein sequence conservation. Literature sources can be interrogated within the database and external links are provided to public databases. The database is freely and publicly accessible online at www.interfil.org (last accessed 13 September 2007). Users can query the database by various keywords and the search results can be downloaded. It is anticipated that the Human Intermediate Filament Database (HIFD) will provide a useful resource to study human genome variations for basic scientists, clinicians, and students alike. Hum Mutat 29(3), [351][352][353][354][355][356][357][358][359][360] 2008.
BackgroundFilaggrin (FLG) mutations result in reduced stratum corneum (SC) natural moisturizing factor (NMF) components and consequent increased SC pH. Because higher pH activates SC protease activity, we hypothesized an enhanced release of proinflammatory IL-1 cytokines from corneocytes in patients with atopic dermatitis (AD) with FLG mutations (ADFLG) compared with that seen in patients with AD without these mutations (ADNON-FLG).ObjectivesWe sought to investigate SC IL-1 cytokine profiles in the uninvolved skin of controls and patients with ADFLG versus patients with ADNON-FLG. We also sought to examine the same profiles in a murine model of filaggrin deficiency (Flgft/Flgft [FlgdelAPfal] mice).MethodsOne hundred thirty-seven patients were studied. NMF levels were ascertained using confocal Raman spectroscopy; transepidermal water loss and skin surface pH were measured. IL-1α, IL-1β, IL-18, IL-1 receptor antagonist (IL-1RA), and IL-8 levels were determined in SC tape strips from 93 patients. All subjects were screened for 9 FLG mutations. Flgft/Flgft (FlgdelAPfal) mice, separated from maFlgft/maFlgft (flaky tail) mice, were used for the preparation and culture of primary murine keratinocytes and as a source of murine skin. RT-PCR was performed using primers specific for murine IL-1α, IL-1β, and IL-1RA.ResultsSC IL-1 levels were increased in patients with ADFLG; these levels were inversely correlated with NMF levels. NMF values were also inversely correlated with skin surface pH. Skin and keratinocytes from Flgft/Flgft mice had upregulated expression of IL-1β and IL-1RA mRNA.ConclusionsADFLG is associated with an increased SC IL-1 cytokine profile; this profile is also seen in a murine homologue of filaggrin deficiency. These findings might have importance in understanding the influence of FLG mutations on the inflammasome in the pathogenesis of AD and help individualize therapeutic approaches.
BackgroundFilaggrin (FLG) has a central role in the pathogenesis of atopic dermatitis (AD). FLG is a complex repetitive gene; highly population-specific mutations and multiple rare mutations make routine genotyping complex. Furthermore, the mechanistic pathways through which mutations in FLG predispose to AD are unclear.ObjectivesWe sought to determine whether specific Raman microspectroscopic natural moisturizing factor (NMF) signatures of the stratum corneum could be used as markers of FLG genotype in patients with moderate-to-severe AD.MethodsThe composition and function of the stratum corneum in 132 well-characterized patients with moderate-to-severe AD were assessed by means of confocal Raman microspectroscopy and measurement of transepidermal water loss (TEWL). These parameters were compared with FLG genotype and clinical assessment.ResultsThree subpopulations closely corresponding with FLG genotype were identified by using Raman spectroscopy. The Raman signature of NMF discriminated between FLG-associated AD and non–FLG-associated AD (area under the curve, 0.94; 95% CI, 0.91-0.99). In addition, within the subset of FLG-associated AD, NMF distinguished between patients with 1 versus 2 mutations. Five novel FLG mutations were found on rescreening outlying patients with Raman signatures suggestive of undetected mutations (R3418X, G1138X, S1040X, 10085delC, and L2933X). TEWL did not associate with FLG genotype subgroups.ConclusionsRaman spectroscopy permits rapid and highly accurate stratification of FLG-associated AD. FLG mutations do not influence TEWL within established moderate-to-severe AD.
Filaggrin is an abundant protein of the outer epidermis that is essential for terminal differentiation of keratinocytes and formation of an effective barrier against water loss and pathogen/allergen/irritant invasion. Recent investigations in Europe and Japan have revealed null mutations in the filaggrin gene (FLG) as the underlying cause of ichthyosis vulgaris (IV), a common skin disorder characterised by dry skin, palmar hyperlinearity and keratosis pilaris. Following the development of a strategy for the comprehensive analysis of FLG, we have identified five unique mutations and one recurrent mutation in Singaporean Chinese IV patients. Mutation 441delA is located in the profilaggrin S100 domain, whereas two additional frameshift mutations, 1249insG and 7945delA, occur in the first partial filaggrin repeat ("repeat 0") and in filaggrin repeat 7, respectively. Both nonsense mutations Q2147X and E2422X are found in filaggrin repeat 6, whereas R4307X was found on one of the longer size variant alleles of FLG, within duplicated repeat 10.2. Mutation E2422X, previously found in a single Dutch patient, was found in one Singaporean IV patient and at a low frequency in Asian population controls. Our study confirms the presence of population-specific as well as recurrent FLG mutations in Singapore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.