Nucleus-targeted therapy holds great promise in cancer treatment, however, a lack of effective nucleus-specific delivery significantly limits its application potential. Here, we report a nucleus-targeted synergistic chemo-photodynamic therapy based on...
An efficient nucleus-targeted co-delivery nanoplatform with high endosomal escape ability to transport proteins and drugs into nucleus was prepared for synergistically enhanced cancer therapy.
Remanufacturing is a practice of growing importance due to increasing environmental awareness and regulations. Facility layout design, as the cornerstone of effective facility planning, is concerned about resource localization for a well-coordinated workflow that leads to lower material handling costs and reduced lead times. However, due to stochastic returns of used products/components and their uncontrollable quality conditions, the remanufacturing process exhibits a high level of uncertainty challenging the facility layout design for remanufacturing. This paper undertakes this problem and presents an optimization method for remanufacturing dynamic facility layout with variable process capacities, unequal processing cells, and intercell material handling. A dynamic multirow layout model is presented for layout optimization and a modified simulated annealing heuristic is proposed toward the determination of optimal layout schemes. The approach is demonstrated through a machine tool remanufacturing system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.