The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.
This paper develops an origami based mechanical metamaterial with programmable deformationdependent stiffness and shape modulation, leading to the realization of a distant actuation feature.Through computational and experimental analyses, we have uncovered that a waterbomb based tubular metamaterial can undergo mixed mode of deformations involving both rigid origami motion and structural deformation. Besides the capability of achieving a near-zero stiffness, a contact phase is identified that initiates a substantial increase in the stiffness with programmable features during deformation of the metamaterial. Initiation of the contact phase as a function of the applied global load can be designed based on the microstructural geometry of the waterbomb bases and their assembly. The tubular metamaterial can exhibit a unique deformation dependent spatially varying mixed mode Poisson's ratio, which is achievable from a uniform initial configuration of the metamaterial. The spatial profile of the metamaterial can be modulated as a function of the applied far-field global force, and the configuration and assembly of the waterbomb bases. This creates a new possibility of developing a distant actuation feature in the metamaterial enabling us to achieve controlled local actuation through the application of a single far-field force. The distant actuation feature eliminates the need of installing embedded complex network of sensors, actuators and controllers in the material. The fundamental programmable features of the origami metamaterial unravelled in this paper can find wide range of applications in soft robotics, aerospace, biomedical devices and various other advanced physical systems.
Three new xanthones, 2-hydroxy-1,6,7-trimethoxyxanthone (1), 1,4-dimethoxy-2,3-methylenedioxyxanthone (2), and 7-hydroxy-1,2-dimethoxyxanthone (3), together with five known compounds, 2,7-dihydroxy-1-methoxyxanthone (4), 1-methoxy-2,3-methylenedioxyxanthone (5), 7-hydroxy-1-methoxyxanthone (6), euxanthone (1,7-dihydroxyxanthone) (7), and gentitein (1,3,7-trihydroxyxanthone) (8), were isolated from the roots of Polygala caudata. Their structures were established on the basis of spectral evidence. In the antioxidation activity screening in vitro with luminol chemiluminescence methods, compounds 1 - 5 and 7 and 8 showed H2O2 scavenger activity, with a scavenging effect of 58.4 - 94.5% at 10 microg/mL, and 26.0 - 84.7% at 2 microg/mL. Compounds 4 and 8 also exhibited scavenging effects on the reactive oxygen free radicals produced by macrophage respiratory bursts, with a scavenging effect of 71.7% and 63.4% at 10 microg/mL, 41.2% and 47.8% at 2 microg/mL, respectively. In the vasodilatation assay, compounds 4 - 7 exhibited relaxing activity on the contractions evoked by KCl in Wistar rat thoracic aorta rings in a dose-dependent manner.
Origami-inspired mechanical metamaterials have recently drawn increasing attention since their flexible mechanical performance has been greatly enhanced by introducing origami patterns to the thin-shell structures. As a typical origami pattern, the waterbomb tube could be adopted to the design of mechanical metamaterials. However, existing designs predominantly make use of the radial expansion/contraction motion of the structure, thereby limiting its full potential to be explored. Here we report a twist motion of tubular mechanical metamaterials based on waterbomb origami that is previously undiscovered. We demonstrate through a detailed kinematic analysis that the initial twist is a rigid-origami motion if the corresponding row of the tube under twist is fully squeezed with both line and plane symmetry, whereas all the subsequent twist motion requires material deformation. The twist angle per axial strain and its relationship with the geometrical parameters of the tube are revealed. Experimental results show the enhancement in stiffness of the tube with the occurrence of the continuous twist motion. We envisage that this finding could greatly expand the application of the waterbomb tube in the design of origami metamaterials with programmable and tuneable mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.