Learning the deep structures and unknown correlations is important for the detection of motor imagery of EEG signals (MI-EEG). This study investigates the use of convolutional neural networks (CNNs) for the classification of multi-class MI-EEG signals. Augmented common spatial pattern (ACSP) features are generated based on pair-wise projection matrices, which covers various frequency ranges. We propose a frequency complementary feature map selection (FCMS) scheme by constraining the dependency among frequency bands. Experiments are conducted on BCI competition IV dataset IIa with 9 subjects. Averaged cross-validation accuracy of 68.45% and 69.27% is achieved for FCMS and all feature maps, respectively, which is significantly higher (4.53% and 5.34%) than random map selection and higher (1.44% and 2.26%) than filter-bank CSP (FBCSP). The results demonstrate that the CNNs are capable of learning discriminant, deep structure features for EEG classification without relying on the handcrafted features.
These results and the subjectwise strong correlations in classification accuracies between MI-SW and MI-Ton demonstrated the feasibility of detecting MI-SW from MI-Ton models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.