ChatGPT, a language-learning model chatbot, has garnered considerable attention for its ability to respond to users’ questions. Using data from 14 countries and 186 institutions, we compare ChatGPT and student performance for 28,085 questions from accounting assessments and textbook test banks. As of January 2023, ChatGPT provides correct answers for 56.5 percent of questions and partially correct answers for an additional 9.4 percent of questions. When considering point values for questions, students significantly outperform ChatGPT with a 76.7 percent average on assessments compared to 47.5 percent for ChatGPT if no partial credit is awarded and 56.5 percent if partial credit is awarded. Still, ChatGPT performs better than the student average for 15.8 percent of assessments when we include partial credit. We provide evidence of how ChatGPT performs on different question types, accounting topics, class levels, open/closed assessments, and test bank questions. We also discuss implications for accounting education and research.
This paper advocates for a drastic transformation of government accountability and reporting. With the availability of Big Data and the advancement of technologies, the existing government reporting schema fails to meet the public's increasing demand for accountability. We discuss the need for the government to reform its reporting schema and prescribe potential paths toward a data-driven, analytics-based, real-time, and proactive reporting paradigm. We conceptualize an app-based continuous monitoring and reporting environment that is real-time, structured, future-oriented, and that incorporates non-financial information like ESG and infrastructure. This reformed reporting paradigm highlights the expected role of government reporting: to provide accountability to the public.
The objective of this research is to build a forecasting model for the evolution of COVID-19 in the state to assist governmental decision-making. This study adopts the Continuous Intelligent Pandemic Monitoring (CIPM) methodology to evaluate the COVID-19 situation in the state of Santa Catarina, Brazil. By examining the data from the state of Santa Catarina, this research examines the reasonableness of current epidemic numbers by using different exogenous variables, determines the severity level of the pandemic in the cities, and simulates its impacts to guide the government in terms of adequate public policy enforcement. The results reveal that the model helps to understand the importance of open data, and highlights the relevance and social contribution of the availability of data in real-time. Additionally, the prediction model contributes to governmental and societal decision making, as it helps to understand the effects of the pandemic on society through the analysis of exogenous variables (Demographic density; Industrial jobs; Percentage of urban population; Territorial extension of the municipality; List of municipalities by region; GDP/Per capita).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.