[1] The daily averaged Solar EUV Monitor (SEM)/Solar Heliospheric Observatory (SOHO) EUV measurements, solar proxies, and foF2 data at 20 ionosonde stations in the east Asia/Australia sector are collected to investigate the solar activity dependences of the ionospheric peak electron density (NmF2). The intensities of solar EUV from the SEM/ SOHO measurements from 1996 to 2005 show a nonlinear relationship with F107, and the SEM/SOHO EUV can be better represented by a solar activity factor P = (F107 + F107A)/2. Seasonal and latitudinal dependences are found in the solar activity variation of NmF2 in the east Asia/Australian sector. The slope of NmF2 with P in the linear segment further shows similar annual variations as the background electron densities at moderate solar activity. Observations show a nonlinear dependence of NmF2 on solar EUV (the saturation effect of NmF2 for high solar EUV). On the basis of a simple model of photochemistry, taking the neutral atmospheric consequences into account, calculations at fixed height simulate the saturation effect of NmF2, but the observed change rate of NmF2 with P is inadequately reproduced. Calculations taking into account the influence of dynamics (via a simple model of the solar EUV dependence of the ionospheric height) tend to reproduce the observed change rate of NmF2. Results indicate that besides solar EUV changes, the influence of dynamics and the atmospheric consequences should substantially contribute to the solar activity variations of NmF2.
[1] More than two years of COSMIC electron density profiles at low solar activities are collected to study the evolution of the Weddell Sea Anomaly (WSA), which appears as an evening enhancement in electron density during local summer. Observations show that the change in NmF2 (the F2 peak electron density) is associated with the change in hmF2 (the F2 peak height), while the latter is correlated closely with the components of the geomagnetic field. We find that (1) in the afternoon, hmF2 is more liable to rise drastically in regions with a larger jsin(2I)j value, which would occur early at certain declinations, eastward in the southern hemisphere and westward in the northern hemisphere; (2) subsequently, a larger increment of hmF2 is coincidentally followed by a stronger enhancement of NmF2 and the enhancement ends just around the local sunset; and (3) in midlatitudes, the evolution pattern of hmF2 in the evening of equinoxes and winter is similar to that in summer, albeit without a lasting NmF2 enhancement as that in summer. These features suggest that the NmF2 enhancement and the hmF2 increase could arise from the thermospheric wind effect, and solar photoionization plays a crucial role in the enhancement as well. The general midlatitude F2 layer enhancement in local summer evening is consistent with the WSA on the above features, indicating that the WSA is a manifestation, with a particular geometry of the magnetic field, of the evening enhancement induced by the winds.
[1] We statistically analyze the ionospheric scale heights in the lower topside ionosphere based on the electron density (N e ) and temperature profiles observed from the incoherent scatter radar (ISR) at Arecibo (293.2°E, 18.3°N), Puerto Rico. In this study, a database containing the Arecibo ISR observations from 1966 to 2002 has been used in order to investigate the diurnal and seasonal variations and solar activity dependences of the vertical scale height (VSH), which is deduced from the electron concentration profiles defined as the value of Àdh/d(ln(N e )), and the effective scale height (H m ), which is defined as the scale height in the Chapman-a function to approximate the N e profiles. As a measure of the slope of the height profiles of the topside electron density, the derived VSH and H m show marked diurnal and seasonal variations and solar activity dependences. Their features are discussed in terms of thermal structures in the lower topside ionosphere. We also investigate the quantitative relationships between H m , VSH, and plasma scale height (H p ) over Arecibo. The similarities and differences in these scale heights are discussed. Results suggest that both the contributions from topside temperature structure and diffusion processes can also greatly control VSH and H m through changing the profile shape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.