In structure-based virtual screening, compound ranking through a consensus of scores from a variety of docking programs or scoring functions, rather than ranking by scores from a single program, provides better predictive performance and reduces target performance variability. Here we compare traditional consensus scoring methods with a novel, unsupervised gradient boosting approach. We also observed increased score variation among active ligands and developed a statistical mixture model consensus score based on combining score means and variances. To evaluate performance, we used the common performance metrics ROCAUC and EF1 on 21 benchmark targets from DUD-E. Traditional consensus methods, such as taking the mean of quantile normalized docking scores, outperformed individual docking methods and are more robust to target variation. The mixture model and gradient boosting provided further improvements over the traditional consensus methods. These methods are readily applicable to new targets in academic research and overcome the potentially poor performance of using a single docking method on a new target.
Aquaporin1 (AQP1) belongs to a highly conserved family of aquaporin proteins which facilitate water flux across cell membranes. Although emerging evidences indicated the cytoplasm was important for AQP1 localization, the function of AQP1 corresponding to its cytoplasmic distribution has rarely been explored until present. In our clinical study, we reported for the first time that AQP1 was localized dominantly in the cytoplasm of cancer cells of invasive breast cancer patients and cytoplasmic AQP1 was an independent prognostic factor. High expression of AQP1 indicated a shorter survival, especially in luminal subtype. Moreover, in line with our findings in clinic, cytoplasmic expression of AQP1 was further validated in both primary cultured breast cancer cells and AQP1 over-expressing cell lines, in which the functional importance of cytoplasmic AQP1 was confirmed in vitro. In conclusion, our study provided the first evidence that cytoplasmic expression of AQP1 promoted breast cancer progression and it could be a potential prognostic biomarker for breast cancer.
Brain metastasis is a significant unmet clinical problem in breast cancer treatment. It is always associated with poor prognosis and high morbidity. Recently, Slit2/Robo1 pathway has been demonstrated to be involved in the progression of breast carcinoma. However, until present, there are no convincing reports that suggest whether the Slit2/Robo1 axis has any role in brain metastasis of breast cancer. In this study, we investigated the correlation between Slit2/Robo1 signaling and breast cancer brain metastasis for the first time. Our results demonstrated that (1) Invasive ductal carcinoma patients with low expression of Slit2 or Robo1 exhibited worse prognosis and brain-specific metastasis, but not liver, bone or lung. (2) Lower expression of Slit2 and Robo1 were observed in patients with brain metastasis, especially in their brain metastasis tumors, compared with patients without brain metastasis. (3) The interval from diagnosis of breast cancer to brain metastasis and brain metastasis to death were both much shorter in patients with low expression of Slit2 or Robo1 compared with the high expression group. Overall, our findings indicated that Slit2/Robo1 axis possibly be regarded as a significant clinical parameter for predicting brain metastasis in breast cancer patients.
Intersectin1 (ITSN1) contains two isoforms: ITSN1-S and ITSN1-L, which is highly regulated by alternative splicing. However, the alteration of alternative splicing and its importance in cancer is still unknown. In this study, our transcriptome analysis by using a large glioma cohort indicated the two isoforms exerted opposite function in glioma progression. Our previous results had shown ITSN1-S could promote glioma development; however, the function of ITSN1-L remained unknown. In this study, we first confirmed that ITSN1-L exerted an inhibitory role in glioma progression both in vivo and in vitro, which was contrary to the function of ITSN1-S. In additional, we also elucidated the mechanisms of ITSN1-L in inhibiting tumor progression. First, we revealed ITSN1-L could interact with α-tubulin to promote HDAC6-dependent deacetylation of ac-tubulin leading to decreased cell motility. Second, ITSN1-L could attenuate cell–substrate adhesion through FAK/integrin β3 pathway. Third, ITSN1-L was able to strengthen cell–cell adhesion by upregulating N-cadherin expression and its re-localization to membrane by ANXA2 and TUBB3/TUBB4. In conclusion, we found for the first time that two isoforms produced by alternative splicing exerted opposite functions in glioma development. Therefore, upregulation of ITSN1-L expression as well as downregulation of ITSN1-S expression probably was a better strategy in glioma treatment. Our present study laid a foundation for the importance of alternative splicing in glioma progression and raised the possibility of controlling glioma development completely at an alternative splicing level to be a more effective strategy.
Girdin, an actin-binding protein, possesses versatile functions in a multitude of cellular processes. Although several studies have shown that Girdin is involved in the cell DNA synthesis, actin cytoskeleton rearrangement, and cell motility, the molecular mechanisms of Girdin in tumor development and progression remain elusive. In this study, through overexpression and siRNA experiments, we found that Girdin increased migration of LN229 human glioblastoma cells. On the other hand, reducing Girdin impaired F-actin polymerization, which is essential for cell morphogenesis and motility. Matrix metalloproteinase 2, critical in human glioma migration and invasion, was down-regulated upon Girdin reduction and led to decreased invasion in vitro and in vivo. In addition, silencing Girdin expression impaired the phosphorylation of two important adhesion molecules, integrin b1 and focal adhesion kinase, resulting in cell adhesion defects. Our immunohistochemical study on human gliomas tissue sections indicated that Girdin expression was positively related with glioma malignancy, supporting the in vitro and in vivo results from cell lines. Collectively, our findings suggest a critical role for Girdin in glioma infiltration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.