Alterations in neuronal morphology occur in primate cerebral cortex during normal aging, vary depending on the neuronal type, region and cortical layer, and have been related to memory and cognitive impairment. We analyzed how such changes affect a specific subpopulation of cortical neurons forming long corticocortical projections from the superior temporal cortex to prefrontal area 46. These neurons were identified by retrograde transport in young and old macaque monkeys. Dendritic arbors of retrogradely labeled neurons were visualized in brain slices by intracellular injection of Lucifer Yellow, and reconstructed three-dimensionally using computer-assisted morphometry. Total dendritic length, numbers of segments, numbers of spines, and spine density were analyzed in layer III pyramidal neurons forming the projection considered. Sholl analysis was used to determine potential age-related changes in dendritic complexity. We observed statistically significant age-related decreases in spine numbers and density on both apical and basal dendritic arbors in these projection neurons. On apical dendrites, changes in spine numbers occurred mainly on the proximal dendrites but spine density decreased uniformly among the different branch orders. On basal dendrites, spine numbers and density decreased preferentially on distal branches. Regressive dendritic changes were observed only in one particular portion of the apical dendrites, with the general dendritic morphology and extent otherwise unaffected by aging. In view of the fact that there is no neuronal loss in neocortex and hippocampus in old macaque monkeys, it is possible that the memory and cognitive decline known to occur in these animals is related to rather subtle changes in the morphological and molecular integrity of neurons subserving identifiable neocortical association circuits that play a critical role in cognition.
Superhydrophobicity on structured surfaces is frequently achieved via the maintenance of liquid-air interfaces adjacent to the trapped air pockets. These interfaces, however, are subject to instabilities due to the Cassie-Baxter-to-Wenzel transition and total wetting. The current work examines in situ liquid-air interfaces on a submerged surface patterned with cylindrical micropores using confocal microscopy. Both the pinned Cassie-Baxter and depinned metastable states are directly observed and measured. The metastable state dynamically evolves, leading to a transition to the Wenzel state. This process is extensively quantified under different ambient pressure conditions, and the data are in good agreement with a diffusion-based model prediction. A similarity law along with a characteristic time scale is derived which governs the lifetime of the air pockets and which can be used to predict the longevity of underwater superhydrophobicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.