For several decades, there has been considerable interest in marine‐derived long chain n‐3 fatty acids (n‐3 LCPUFAs) due to their outstanding health benefits. n‐3 LCPUFAs can be found in nature either in triglycerides (TAGs) or in phospholipid (PL) form. From brain health point of view, PL n‐3 is more bioavailable and potent compared to n‐3 in TAG form, as only PL n‐3 is able to cross the blood–brain barrier and can be involved in brain biochemical reactions. However, PL n‐3 has been ignored in the fish oil industry and frequently removed as an impurity during degumming processes. As a result, PL products derived from marine sources are very limited compared to TAG products. Commercially, PLs are being used in pharmaceutical industries as drug carriers, in food manufacturing as emulsifiers and in cosmetic industries as skin care agents, but most of the PLs used in these applications are produced from vegetable sources that contain less (without EPA, DPA, and DHA) or sometimes no n‐3 LCPUFAs. This review provides a comprehensive account of the properties, structures, and major sources of marine PLs, and provides focussed discussion of their relationship to brain health. Epidemiological, laboratory, and clinical studies on n‐3 LCPUFAs enriched PLs using different model systems in relation to brain and mental health that have been published over the past few years are discussed in detail.
Background: Most previous studies have found that human intestinal microbiota affect the symptoms of autism spectrum disorder (ASD), especially gastrointestinal (GI) symptoms, but regarding this, there is limited data of non-western ethnicity. Probiotics can reconstitute the host intestinal microbiota and strengthen gastrointestinal function, however, clinical data proving the effect of probiotics treatment on ASD is lacking.Methods: This study explored the significant differences between ASD and neurotypical (NT), and the improvement of applied behavior analysis (ABA) training in combination with probiotics, vs. ABA training only.Results: We found significant differences between the ASD group and the NT group in the evenness of the intestinal microbiota and the relative abundance of the bacterial phyla and genus. At the phylum level, relative abundance of Bacteroidetes in the ASD group was significantly lower than in the NT group. At the genus level, the relative abundance of Bacteroides, Bifidobacterium, Ruminococcus, Roseburia, and Blautia in the ASD group was significantly lower than that in the NT group. After a 4-week ABA training program in combination with probiotics treatment, the ATEC and GI scores decreased more than the control group with ABA training only.Conclusion: Our findings suggest that intestinal microbiota is different between the NT children and the ASD children with or without GI problems. In combination with ABA training, probiotics treatment can bring more benefit to ASD children. Clinical trials with a more rigorous design and larger sample size are indispensable for further validation.
Sepsis is a common and frequently fatal syndrome in Yuetan Subdistrict, Beijing. The occurrence rate and mortality of sepsis are significantly higher in males and elderly people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.