It remained prevalent in the past years to obtain the precommitment strategies for Markowitz's mean-variance portfolio optimization problems, but not much is known about their time-consistent strategies. This paper takes a step to investigate the time-consistent Nash equilibrium strategies for a multiperiod mean-variance portfolio selection problem. Under the assumption that the risk aversion is, respectively, a constant and a function of current wealth level, we obtain the explicit expressions for the time-consistent Nash equilibrium strategy and the equilibrium value function. Many interesting properties of the time-consistent results are identified through numerical sensitivity analysis and by comparing them with the classical pre-commitment solutions.
This paper investigates a multi-period mean-variance portfolio selection with regime switching and uncertain exit time. The returns of assets all depend on the states of the stochastic market which are assumed to follow a discrete-time Markov chain. The authors derive the optimal strategy and the efficient frontier of the model in closed-form. Some results in the existing literature are obtained as special cases of our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.