Inflammasomes, multiprotein complex induced by harmful factors in the body, play a crucial role in innate immunity. Activation of inflammasomes lead to the activation of casepase-1 and then the secretion of inflammatory cytokines, including IL-1β and IL-18, subsequently leading to a type of cell death called pyroptosis. There are two types of signaling pathways involved in the process of inflammasome activation: the canonical and the non-canonical signaling pathway. The canonical signaling pathway is mainly dependent on casepase-1; the non-canonical signal pathway, which was recently discovered, is mainly dependent on caspase-11, but is also meditated by caspase-4, caspase-5, and caspase-8. Kidney inflammation is basically associated with inflammatory factor exudation and inflammatory cell infiltration. Several studies have showed that inflammasomes are closely related to kidney diseases, especially the NOD-, LRR-and pyrin domain-containing 3 (NLRP3) inflammasome, which play a role in regulating kidney inflammation and fibrosis. In this review, we focus on the relationship between inflammasomes and kidney diseases, especially the role of the NLRP3 inflammasome in different kinds of kidney disease via both canonical and non-canonical signal pathways.
Background: Membranous nephropathy (MN), a major cause of nephrotic syndrome, has attracted people's attention in recent years for its growing prevalence. It is the second or third leading cause of ESRD in patients with primary glomerulonephritis and is the leading glomerulopathy that recurs after kidney transplantation. Summary: MN can be classified as idiopathic membranous nephropathy (IMN) and secondary MN. The discovery of the M-type phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain-containing 7A (THSD7A) provides the new diagnostic methods and treatment strategies for IMN on the molecular level. The study on single nucleotide polymorphism of IMN genes, such as the single M-type phospholipase A2 receptor 1 (PLA2R1) gene and human leukocyte antigen (HLA) gene, explains the pathogenesis of the disease from the perspective of genetics and conforms to the trend of the era of precision medicine. Key Messages: This review focuses on advances in the pathogenesis of IMN, including molecular and genetic pathogenesis, as well as discussing the diagnostic and treatment guiding value brought by these new discoveries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.