Antipsychotic pharmacotherapy is strongly obesogenic and is associated with increased oxidative stress in patients with schizophrenia. However, whether these changes reflect psychopathology, antipsychotic efficacy, or some other factor is not known. Our study aims to investigate the degree of oxidative stress in different BMI categories and to identify clinical symptomatology that may be paired with increased oxidative stress in a schizophrenia population. To this end, we performed a cross-sectional study and recruited 89 long-term inpatients with schizophrenia and collected the following variables: plasma malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), routine biochemical analysis, and psychopathology through the Positive and Negative Syndrome Scale (PANSS). The results indicate that the levels of the lipid peroxidation product, MDA, were significantly higher in the high BMI group than the low (normal) BMI group. As expected, high BMI was associated with an atherogenic lipid profile; however, it was also associated with fewer psychopathological symptoms. Multiple regression analysis found that MDA levels, the PANSS general psychopathology subscore, and triglyceride levels (all p < 0.05) were independent contributors to the BMI in patients. These results suggested that oxidative stress may play an important role in antipsychotic-induced weight gain. Further investigations using the longitudinal design in first-episode schizophrenia patients are needed to explore the beneficial effect of antioxidants on the abnormal lipid metabolism mediated by antipsychotic treatment.
The microbiota–gut–brain axis plays a critical role in the pathogenesis of major depressive disorder (MDD) and related subclinical symptoms. However, studies on the gut microbiota in MDD are inconsistent, and data on MDD's effects on sleep are lacking. This study aimed to analyze the gut microbiota composition and sleep quality of patients with MDD. We performed 16S rRNA sequencing of stool samples from 36 patients with MDD and 45 healthy controls (HC). Sleep quality was assessed using the Pittsburgh Sleep Quality Index, depressive severity with the Hamilton Depression Scale, and insomnia severity using the Insomnia Severity Index. Forty-eight microbiota targets showed significant differences between MDD and HC. In MDD, six microbiota targets were associated with the severity of depression, 11 with sleep quality, and 3 with sleep severity. At the genus level, Dorea was simultaneously related to depression and sleep quality, while Intestinibacter was more closely related to sleep problems. Coprococcus and Intestinibacter were associated with sleep quality independent of the severity of depression. In conclusion, the present findings enable a better understanding of the relationship between gut microbiota and MDD-related symptoms. Gut microbiota alterations may become potential biomarkers and/or treatment targets for sleep quality in MDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.