It is a grand challenge to develop a truly effective treatment of substance use disorder (SUD), particularly for cocaine and other drugs without an FDA-approved treatment available, because a truly effective therapy must effectively block the drug's physiological and reinforcing effects during the entire period of treatment in order to achieve the long-time abstinence required by the FDA. Whether a biologic, such as monoclonal antibody, vaccine, or therapeutic enzyme, can be truly effective for SUD treatment or not has been the subject of extensive debate. The main debate question is whether a biologic, particularly an exogenous enzyme, can effectively block the drug's reinforcing effect. In this report, we demonstrate that a modest dose of a recently redesigned longacting cocaine hydrolase, CocH3-Fc(M6), can be used to effectively block the psychostimulant, discriminative stimulus, and reinforcing effects of cocaine for a sufficiently long period of time. For example, a dose of 3 mg/kg CocH3-Fc(M6) completely blocked the discriminative stimulus and reinforcing effects for 24/25 days and continued to significantly attenuate/decrease the cocaine effects for at least 29 days in rats. All the animal data consistently suggest that the long-acting cocaine hydrolase is a truly promising candidate of enzyme therapy for treatment of cocaine use disorder.
Human butyrylcholinesterase (BChE) is known as a safe and effective protein for detoxification of organophosphorus (OP) nerve agents. Its rationally designed mutants with considerably improved catalytic activity against cocaine, known as cocaine hydrolases (CocHs), are recognized as the most promising drug candidates for the treatment of cocaine abuse. However, it is a grand challenge to efficiently produce active recombinant BChE and CocHs with a sufficiently long biological half-life. In the present study, starting from a promising CocH, known as CocH3 (i.e. A199S/F227A/S287G/A328W/Y332G mutant of human BChE), which has a ~2000-fold improved catalytic activity against cocaine compared to wild-type BChE, we designed an Nterminal fusion protein, Fc(M3)-(PAPAP) 2 -CocH3, which was constructed by fusing Fc of human IgG1 to the N-terminal of CocH3 and further optimized by inserting a linker between the two protein domains. Without lowering the enzyme activity, Fc(M3)-(PAPAP) 2 -CocH3 expressed in Chinese hamster ovary (CHO) cells has not only a long biological half-life of 105 ± 7 hours in rats, but also a high yield of protein expression. Particularly, Fc(M3)-(PAPAP) 2 -CocH3 has a ~21fold increased protein expression yield in CHO cells compared to CocH3 under the same experimental conditions. Given the observations that Fc(M3)-(PAPAP) 2 -CocH3 has not only a high catalytic activity against cocaine and a long biological half-life, but also a high yield of protein expression, this new protein entity reported in this study would be a more promising candidate for therapeutic treatment of cocaine overdose and addiction.
Cocaine abuse is a worldwide public health and social problem without a US Food and Drug Administration (FDA)-approved medication. Accelerating cocaine metabolism that produces biologically inactive metabolites by administration of an efficient cocaine hydrolase (CocH) has been recognized as a promising strategy for cocaine abuse treatment. However, the therapeutic effects of CocH are limited by its short biological half-life (e.g., 8 h or shorter in rats). In this study, we designed and prepared a set of Fc-fusion proteins constructed by fusing Fc(M3) with CocH3 at the N-terminus of CocH3. A linker between the two protein domains was optimized to improve both the biological half-life and catalytic activity against cocaine. It has been concluded that Fc(M3)-GS-CocH3 not only has fully retained the catalytic efficiency of CocH3 against cocaine but also has the longest biological half-life (e.g., ∼ 136 h in rats) among all of the long-acting CocHs identified so far. A single dose (0.2 mg/kg, IV) of Fc(M3)-GS-CocH3 was able to significantly attenuate 15 mg/kg cocaine-induced hyperactivity for at least 11 days (268 h) after the Fc(M3)-GS-CocH3 administration.
Cebranopadol is known as a highly potent analgesic. Recent studies also demonstrated that administration of cebranopadol significantly decreased cocaine self-administration and significantly reduced cue-induced cocaine-seeking behaviors in rats. However, it was unclear whether these interesting behavioral observations are related to any potential effects of cebranopadol on cocaine pharmacokinetics or cocaine-induced hyperactivity. In principle, a promising therapeutic candidate for cocaine dependence treatment may alter the cocaine pharmacokinetics and/or attenuate cocaine-induced reward and hyperactivity and, thus, decrease cocaine self-administration and reduce cue-induced cocaine-seeking behaviors. In this study, we examined possible effects of cebranopadol on cocaine pharmacokinetics and cocaine-induced hyperactivity for the first time. According to our animal data in rats, cebranopadol did not significantly alter the pharmacokinetics of cocaine. According to our more extensive locomotor activity testing data, cebranopadol itself also dose-dependently induced hyperactivity in rats at doses higher than 50 µg/kg. Cebranopadol at a low dose of 25 µg/kg (p.o.) did not induce significant hyperactivity itself, but significantly potentiated cocaine-induced hyperactivity on Days 4 to 7 after the repeated daily dosing of the drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.