The accuracy of the detection of prostate cancer is increased through a combination of the three techniques. Moreover, MRS demonstrated higher accuracy compared with T2WI or DWI.
One of the hallmarks of placental dysfunction is the increase of oxidative stress. This process, along with the overexpression of the inflammasome, creates a downward spiral that can lead to a series of severe pregnancy complications. Ferroptosis is a form of iron-mediated cell death involving the accumulation of reactive oxygen species, lipid peroxides. In this study, the rats’ model of oxidative stress abortion was established, and hydrogen peroxide (H2O2) was used to establish a cellular model of placental oxidative stress. RNAi, western blot, and immunofluorescence were used to evaluate the expression of specific markers of ferroptosis and the expression of the inflammasome in placental trophoblast cells. We observed excessive levels of ferroptosis and inflammasome activation in both rats’ model and placental trophoblast cell model of oxidative stress. When the NLRP1 inflammasome was silenced, the expression levels of GSH and Glutathione peroxidase 4 (GPX4) were increased, while the expression levels of transferrin receptor 1 (TFR1), acyl-CoA synthetase long-chain family member 4 (ACSL4), Superoxide dismutase (SOD), and Malondialdehyde (MDA) were decreased. However, when an NLRP1 activator was applied, we observed the opposite phenomenon. We further explored the mechanisms underlying the actions of ferroptosis to inflammasomes. The expression levels of NLRP1, NLRP3, IL-1β, and caspase-1 were positively correlated with the ferroptosis following the application of ferroptosis inhibitor (ferrostatin-1) and ferroptosis activator (erastin). The existence of ferroptosis was demonstrated in the oxidative stress model of placental trophoblast cells; the results also indicate ferroptosis is linked with the expression of NLRP1 inflammasome. These findings may provide a valuable therapeutic target for the pathogenesis of pregnancy-related diseases.
Human cervical cancer is one of the most common malignancies worldwide. Recent studies have focused on microRNAs that play crucial roles in cancer development and progression of cervical cancer. In this study, we aimed to analyse the biological function of microRNA-543 in cervical cancer. Samples of human cervical cancer and matched adjacent normal cervical tissues were collected, and expression level of microRNA-543 and the clinical characteristics of cervical cancer were investigated. We found that microRNA-543 expression was significantly elevated in cervical cancer and its aberrant expression levels were positively correlated with tumour size ( p = 0.0315), differentiation ( p = 0.0134), clinical stage ( p = 0.0315) and overall ( p = 0.0426) and disease-free survival ( p = 0.0396) of cervical cancer. Overexpression of microRNA-543 in cancer-derived HeLa and SiHa facilitated cell growth and suppressed cell apoptosis, while down-regulation of microRNA-543 exerted a reverse effect on cell growth and apoptosis. In addition, we demonstrated that BRCA1-interacting protein 1 was directly regulated by microRNA-543 and the restoration of BRCA1-interacting protein 1 expression reversed the effects of microRNA-543 on cell proliferation. Taken together, these findings collectively demonstrate that microRNA-543 exerts its oncogene function by directly targeting BRCA1-interacting protein 1 in cervical cancer, indicating a potential novel potential prognostic biomarker and therapeutic target for cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.