The challenge of controllable chemical synthesis of aluminum nanocrystals (Al NCs) has been met with only limited success. A major barrier is the absence of effective ligands to control the nucleation and growth of Al NCs.Here we demonstrate the size-and shape-controlled synthesis of monodisperse Al NCs using a polymer ligand, cumyl dithiobenzoate-terminated polystyrene (CDTB-PS). Density functional theory (DFT) calculations indicate that CDTB-PS shows selective absorption on Al{100} facets, inducing the formation of nanocubes and trigonal bipyramids. An excess of CDTB-PS, however, decreases the supersaturation of Al atoms, leading to the formation of {111} facetterminated octahedral and triangular plates. The concentration of the catalyst, titanium (IV) isopropoxide, determines the size of Al NCs by controlling the number of seeds. Depending on nanoparticle size, the solutions of Al NCs possess distinct colors, a characteristic feature of plasmonic nanomaterials. This robust and controlled chemical synthesis of Al NCs lays a foundation for Al as a sustainable plasmonic material for current and future applications.
We study the influence of shape of Janus particles on their orientation and surface activity at fluid-fluid interfaces via molecular dynamics simulations. The Janus particles are characterized by two regions with different wettability divided along their major axes. Three types of Janus particles are considered: Janus spheres, Janus rods, and Janus disks. We find that Janus spheres and Janus rods prefer one orientation at the interface, regardless of the surface property. In contrast, Janus disks can adopt one of two orientations when adhered to a fluid-fluid interface: one orientation corresponds to the equilibrium state and the other is a kinetically trapped metastable state. The orientation of Janus disks strongly depends on the disk characteristics, such as their size, aspect ratio, and surface property. Furthermore, we find that changes in the shape of Janus particles strongly influence the interfacial tension at the fluid-fluid interface. According to the time evolution of the interfacial tension, the adsorption of Janus particles is characterized by three adsorption stages based on different surface activities and adsorption kinetics depending on the particle shape.
Multimetallic oxygen evolution reaction (OER) electrocatalysts have recently gained significant attention due to their excellent intrinsic activity resulting from the synergistic interplay between multiple metal sites. However, in these multimetallic catalyst systems, the function of their bridging anionic ligands (e.g., O 2− , S 2− , and P 3− /PO 4 3− ) is rarely investigated, partially due to the lack of an ideal material model system. Herein, by combining a careful electrochemical conversion of metal−organic framework (MOF) precursors with low-temperature phosphorization processes, we designed a series of NiFe-based model catalysts as a proof-of-concept platform to identify the roles of different anionic ligands in tuning the redox and electronic properties of metal sites. Our experimental and theoretical results reveal that ligands having varying electron-withdrawing/donating ability can modulate not only the electron density of Ni 2+ /Fe 3+ centers but also the electron transfer efficiency from Ni 2+ to neighboring Fe 3+ sites. Importantly, synergistically coupled ligands (e.g., S 2− and PO 4 3− ) with complementary electronic properties help to optimize the chemical environments of the Ni 2+ /Fe 3+ centers (even upon partial catalyst surface reconstruction to NiFe oxyhydroxide), thus giving rise to a remarkable OER activity. These insights open new avenues for developing highly active multimetallic OER electrocatalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.