Pulmonary ground-glass opacity (GGO) nodules are more likely to be malignant compared with solid solitary nodules. Due to indistinct boundaries of GGO nodules, the detection and diagnosis are challenging for doctors. Therefore, designing an automatic GGO nodule detection and classification scheme is significantly essential. Methods: In this paper, we proposed a two-stage 3D GGO nodule detection and classification framework. First, we used a pretrained 3D U-Net to extract lung parenchyma. Second, we adapted the architecture of Mask region-based convolutional neural networks (RCNN) to handle 3D medical images. The 3D model was then applied to detect the locations of GGO nodules and classify lesions (benign or malignant). The class-balanced loss function was also used to balance the number of benign and malignant lesions. Finally, we employed a novel false positive elimination scheme called the feature-based weighted clustering (FWC) to promote the detection accuracy further. Results:The experiments were conducted based on fivefold cross-validation with the imbalanced data set. Experimental results showed that the mean average precision could keep a high level (0.5182) in the phase of detection. Meanwhile, the false positive rate was effectively controlled, and the competition performance metric (CPM) reached 0.817 benefited from the FWC algorithm. The comparative statistical analyses with other deep learning methods also proved the effectiveness of our proposed method. Conclusions: We put forward an automatic pulmonary GGO nodules detection and classification framework based on deep learning. The proposed method locate and classify nodules accurately, which could be an effective tool to help doctors in clinical diagnoses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.