The lipid droplet (LD) is a cell organelle that has been linked to human metabolic syndromes and that can be exploited for the development of biofuels. The isolation of LDs is crucial for carrying out morphological and biochemical studies of this organelle. In the past two decades, LDs have been isolated from several organisms and investigated by microscopy, proteomics and lipidomics. However, these studies need to be extended to more model organisms, as well as to more animal tissues. Thus, a standard method that can be easily applied to these new samples with the need for minimal optimization is essential. Here we provide an LD isolation protocol that is relatively simple and suitable for a wide range of tissues and organisms. On the basis of previous studies, this 7-h protocol can yield 15-100 μg of protein-equivalent high-quality LDs that satisfy the requirements for current LD research in most organisms.
Brown adipose tissue (BAT) maintains animal body temperature by non-shivering thermogenesis, which is through uncoupling protein 1 (UCP1) that uncouples oxidative phosphorylation and utilizes β-oxidation of fatty acids released from triacylglycerol (TAG) in lipid droplets (LDs). Increasing BAT activity and "browning" other tissues such as white adipose tissue (WAT) can enhance the expenditure of excess stored energy, and in turn reduce prevalence of metabolic diseases. Although many studies have characterized the biology of BAT and brown adipocytes, BAT LDs especially their activation induced by cold exposure remain to be explored. We have isolated LDs from mouse interscapular BAT and characterized the full proteome using mass spectrometry. Both morphological and biochemical experiments showed that the LDs could tightly associate with mitochondria. Under cold treatment mouse BAT started expressing LD structure protein PLIN-2/ADRP and increased expression of PLIN1. Both hormone sensitive lipase (HSL) and adipose TAG lipase (ATGL) were increased in LDs. In addition, isolated BAT LDs showed increased levels of the mitochondrial protein UCP1, and prolonged cold exposure could stimulate BAT mitochondrial cristae biogenesis. These changes were in agreement with the data from transcriptional analysis. Our results provide the BAT LD proteome for the first time and show that BAT LDs facilitate heat production by coupling increasing TAG hydrolysis through recruitment of ATGL and HSL to the organelle and expression of another LD resident protein PLIN2/ADRP, as well as by tightly associating with activated mitochondria. These findings will benefit the study of BAT activation and the interaction between LDs and mitochondria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.