Pseudomonas aeruginosa secretes copious amounts of the redox-active phenazine, pyocyanin (PCN), during cystic fibrosis lung infection. PCN has been shown to interfere with a variety of cellular processes in cultured lung epithelial cells. Here, by using two respiratory tract models of infection, we demonstrate that PCN mediates tissue damage and necrosis during lung infection
Pseudomonas aeruginosa produces copious amounts of the redoxactive tricyclic compound pyocyanin that kills competing microbes and mammalian cells, especially during cystic fibrosis lung infection. Cross-phylum susceptibility to pyocyanin suggests the existence of evolutionarily conserved physiological targets. We screened a Saccharomyces cerevisiae deletion library to identify presumptive pyocyanin targets with the expectation that similar targets would be conserved in humans. Fifty S. cerevisiae targets were provisionally identified, of which 60% have orthologous human counterparts. These targets encompassed major cellular pathways involved in the cell cycle, electron transport and respiration, epidermal cell growth, protein sorting, vesicle transport, and the vacuolar ATPase. Using cultured human lung epithelial cells, we showed that pyocyanin-mediated reactive oxygen intermediates inactivate human vacuolar ATPase, supporting the validity of the yeast screen. We discuss how the inactivation of VATPase may negatively impact the lung function of cystic fibrosis patients.T he most common pathogen during infection of the cystic fibrosis (CF) airways is Pseudomonas aeruginosa, which is also important in burn related sepsis, various nosocomial infections, and HIV-related illness (1, 2). The extensive host range and complex pathophysiology of infections associated with P. aeruginosa is due to its ability to produce a large repertoire of virulence determinants (1, 2). In addition to delivering proteins into eukaryotic cells by a type III secretion system to disrupt the host immune response and cause cytoskeletal reorganization (3), P. aeruginosa also produces a large number of toxic exoproducts, including proteases, rhamnolipids, and pyocyanin (PCN) (1, 2).PCN, a blue redox-active secondary metabolite, is a member of a large family of tricyclic compounds known as phenazines (4). Mutational and biochemical analyses have identified two groups of gene products required for PCN biosynthesis. First, the MvfR transcription factor is required to activate the phnAB genes (5-7). The phnA-B gene products synthesize quinolone that regulate the phzRABCDEFG operons 1 and 2, the structural genes for phenazine synthesis (8).Previous investigations have suggested that PCN contributes to the ability of P. aeruginosa to persist in the lungs of CF patients (9). In addition, in vitro studies have shown that PCN interferes with a myriad of mammalian cell functions. These include cell respiration, ciliary beating, epidermal cell growth (9, 10), calcium homeostasis (11), prostacyclin release from lung endothelial cells (12), apoptosis in neutrophils (13), release of interleukin-2 (limits growth of T lymphocytes), secretion of Ig by B-lymphocytes (14), and imbalance of protease-antiprotease activity in the airways of CF patients (15). However, the precise molecular mechanism underlying PCN-mediated pathology is unknown.PCN also inhibits microbial growth by initiating a redox cascade that can occur nonenzymatically via NADH or NADPH (16). Sev...
Gaucher disease is caused by defective acid β-glucosidase (GCase) function. Saposin C is a lysosomal protein needed for optimal GCase activity. To test the in vivo effects of saposin C on GCase, saposin C deficient mice (C−/−) were backcrossed to point mutated GCase (V394L/V394L) mice. The resultant mice (4L;C*) began to exhibit CNS abnormalities ∼30 days: first as hindlimb paresis, then progressive tremor and ataxia. Death occurred ∼48 days due to neurological deficits. Axonal degeneration was evident in brain stem, spinal cord and white matter of cerebellum accompanied by increasing infiltration of the brain stem, cortex and thalamus by CD68 positive microglial cells and activation of astrocytes. Electron microscopy showed inclusion bodies in neuronal processes and degenerating cells. Accumulation of p62 and Lamp2 were prominent in the brain suggesting the impairment of autophagosome/lysosome function. This phenotype was different from either V394L/V394L or C−/− alone. Relative to V394L/V394L mice, 4L;C* mice had diminished GCase protein and activity. Marked increases (20- to 30-fold) of glucosylsphingosine (GS) and moderate elevation (1.5- to 3-fold) of glucosylceramide (GC) were in 4L;C* brains. Visceral tissues had increases of GS and GC, but no storage cells were found. Neuronal cells in thick hippocampal slices from 4L;C* mice had significantly attenuated long-term potentiation, presumably resulting from substrate accumulation. The 4L;C* mouse mimics the CNS phenotype and biochemistry of some type 3 (neuronopathic) variants of Gaucher disease and is a unique model suitable for testing pharmacological chaperone and substrate reduction therapies, and investigating the mechanisms of neuronopathic Gaucher disease.
Gaucher disease, a prevalent lysosomal storage disease, is caused by insufficient activity of acid β-glucosidase (GCase) and resultant glucosylceramide accumulation. Recently in Parkinson disease (PD) patients, heterozygous mutations in GCase have been associated with earlier onset and more progressive PD. To understand the pathogenic relationships between GCase variants and Parkinsonism, α-synuclein and ubiquitin distributions and levels in the brains of several mouse models containing GCase variants were evaluated by immunohistochemistry. Progressive α-synuclein and ubiquitin aggregate accumulations were observed in the cortex, hippocampus, basal ganglia, brainstem, and some cerebellar regions between 4-24 wks in mice that were homozygous for GCase [D409H (9H) or V394L (4L)] variants and also had a prosaposin hypomorphic (PS-NA) transgene. In 4L/PS-NA and 9H/PS-NA mice, this was coincident with progressive neurological manifestations and brain glucosylceramide accumulation. Ultrastructural studies showed electron dense inclusion bodies in neurons and axons of 9H/PS-NA brains. α-Synuclein aggregates were also observed in ventricular, brainstem, and cerebellar regions of older mice (>42-wk) with the GCase variant (D409H/D409H) without overt neurological disease. In a chemically induced GCase deficiency, α-synuclein aggregates and glucosylceramide accumulation also occurred. These studies demonstrate a relationship between glucosylceramide accumulation and α-synuclein aggregates, and implicate glucosylceramide accumulation as risk factor for the α-synucleinopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.