In this paper, an improved ant colony optimization(ICMPACO) algorithm based on the multi-population strategy, co-evolution mechanism, pheromone updating strategy, and pheromone diffusion mechanism is proposed to balance the convergence speed and solution diversity, and improve the optimization performance in solving the large-scale optimization problem. In the proposed ICMPACO algorithm, the optimization problem is divided into several sub-problems and the ants in the population are divided into elite ants and common ants in order to improve the convergence rate, and avoid to fall into the local optimum value. The pheromone updating strategy is used to improve optimization ability. The pheromone diffusion mechanism is used to make the pheromone released by ants at a certain point, which gradually affects a certain range of adjacent regions. The co-evolution mechanism is used to interchange information among different sub-populations in order to implement information sharing. In order to verify the optimization performance of the ICMPACO algorithm, the traveling salesmen problem (TSP) and the actual gate assignment problem are selected here. The experiment results show that the proposed ICMPACO algorithm can effectively obtain the best optimization value in solving TSP and effectively solve the gate assignment problem, obtain better assignment result, and it takes on better optimization ability and stability. INDEX TERMS Co-evolution mechanism, ACO, pheromone updating strategy, pheromone diffusion mechanism, hybrid strategy, assignment problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.