Cyclophilin A (CyPA), a ubiquitously distributed intracellular protein, is a peptidylprolyl cis-trans-isomerase and the major target of the potent immunosuppressive drug cyclosporin A. Although expressed predominantly as an intracellular molecule, CyPA is secreted by cells in response to inflammatory stimuli and is a potent neutrophil and eosinophil chemoattractant in vitro and in vivo. The mechanisms underlying CyPA-mediated signaling and chemotaxis are unknown. Here, we identified CD147 as a cell surface receptor for CyPA and demonstrated that CD147 is an essential component in the CyPA-initiated signaling cascade that culminates in ERK activation. Both signaling and chemotactic activities of CyPA depended also on the presence of heparans, which served as primary binding sites for CyPA on target cells. The proline 180 and glycine 181 residues in the extracellular domain of CD147 were critical for signaling and chemotactic activities mediated by CD147. Also crucial were active site residues of CyPA, because rotamase-defective CyPA mutants failed to initiate signaling events. These results establish cyclophilins as natural ligands for CD147 and suggest an unusual, rotamase-dependent mechanism of signaling.
Many of the tumor-associated matrix metalloproteinases that are implicated in metastasis are produced by stromal fibroblasts within or surrounding the tumor in response to stimulation by factors produced by tumor cells. In this study we transfected Chinese hamster ovary cells with putative cDNA for human extracellular matrix metalloproteinase inducer (EMMPRIN), a transmembrane glycoprotein that is attached to the surface of many types of malignant human tumor cells and that has previously been implicated in stimulation of matrix metalloproteinase production in fibroblasts. We show that these transfected cells synthesize EMMPRIN that is extensively post-translationally processed; this recombinant EMMPRIN stimulates human fibroblast production of interstitial collagenase, stromelysin-1, and gelatinase A (72-kDa type IV collagenase). We propose that EMMPRIN regulates matrix metalloproteinase production during tumor invasion and other processes involving tissue remodeling.
Cyclophilin A (CyPA) is specifically incorporated into the virions of HIV-1 and has been shown to enhance significantly an early step of cellular HIV-1 infection. Our preliminary studies implicated CD147 as a receptor for extracellular CyPA. Here, we demonstrate a role for CyPA-CD147 interaction during the early steps of HIV-1 infection. Expression of human CD147 increased infection by HIV-1 under one-cycle conditions. However, susceptibility to infection by viruses lacking CyPA (simian immunodeficiency virus or HIV-1 produced in the presence of cyclosporin A) was unaffected by CD147. Virus-associated CyPA coimmunoprecipitated with CD147 from infected cells. Antibody to CD147 inhibited HIV-1 entry as evidenced by the delay in translocation of the HIV-1 core proteins from the membrane and inhibition of viral reverse transcription. Viruses whose replication did not require CyPA (SIV or mutant HIV-1) were resistant to the inhibitory effect of anti-CD147 antibody. These results suggest that HIV-1 entry depends on an interaction between virus-associated CyPA and CD147 on a target cell.
Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of morbidity and mortality in neonates. Because of high concentrations of sensitive immature cells, metal-catalyzed free radicals, non-saturated fatty acids, and low concentrations of antioxidant enzymes, the brain requires high levels of oxygen supply and is, thus, extremely sensitive to hypoxia. Strong evidence indicates that oxidative stress plays an important role in pathogenesis and progression. Following hypoxia and ischemia, reactive oxygen species (ROS) production rapidly increases and overwhelms antioxidant defenses. A large excess of ROS will directly modify or degenerate cellular macromolecules, such as membranes, proteins, lipids, and DNA, and lead to a cascading inflammatory response, and protease secretion. These derivatives are involved in a complex interplay of multiple pathways (e.g., inflammation, apoptosis, autophagy, and necrosis) which finally lead to brain injury. In this review, we highlight the molecular mechanism for oxidative stress in HIE, summarize current research on therapeutic strategies utilized in combating oxidative stress, and try to explore novel potential clinical approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.