Objectives To compare clinical, laboratory, and chest computed tomography (CT) findings in critically ill patients diagnosed with coronavirus disease 2019 (COVID-19) who survived and who died. Methods This retrospective study reviewed 60 critically ill patients (43 males and 17 females, mean age 64.4 ± 11.0 years) with COVID-19 pneumonia who were admitted to two different clinical centers. Their clinical and medical records were analyzed, and the chest CT images were assessed to determine the involvement of lobes and the distribution of lesions in the lungs between the patients who recovered from the illness and those who died. Results Compared with recovered patients (50/60, 83%), deceased patients (10/60, 17%) were older (mean age, 70.6 vs. 62.6 years, p = 0.044). C-reactive protein (CRP) (110.8 ± 26.3 mg/L vs 63.0 ± 50.4 mg/L, p < 0.001) and neutrophil-tolymphocyte ratio (NLR) (18.7 ± 16.6 vs 8.4 ± 7.5, p = 0.030) were significantly elevated in the deceased as opposed to the recovered. Medial or parahilar area involvement was observed in all the deceased patients (10/10, 100%), when compared to only 54% (27/50) in the recovered. Ground-glass opacities (97%), crazy-paving pattern (92%), and air bronchogram (93%) were the most common radiological findings. There was significant difference in diabetes (p = 0.025) and emphysema (p = 0.013), and the odds ratio on a deceased patient having diabetes and emphysema was 6 times and 21 times the odds ratio on a recovered patient having diabetes and emphysema, respectively. Conclusions Older patients with comorbidities such as diabetes and emphysema, and higher CRP and NLRs with diffuse lung involvement were more likely to die of COVID-19. Key Points • Almost all patients critically ill with COVID-19 pneumonia had five lung lobes involved. • Medial or parahilar area involvement and degree of lung involvement were more serious in the deceased patients when compared with those who recovered from treatment. • Chronic lung disease, e.g., emphysema, diabetes, and higher serum CRP and NLR characterized patients who died of COVID-19.
Autophagy plays critical roles in airway inflammation and fibrosis-mediated airway remodeling and many factors including proinflammatory cytokines and inflammation related pathways are involved in the process. The aim of the present study was to examine the role of epithelial microRNAs (miRNAs) in autophagy-mediated airway remodeling and to identify the factors involved and the underlying mechanisms. Serum miR-34/449, inflammatory factors, and autophagy and fibrosis-related proteins were determined by real-time PCR, enzyme-linked immunosorbent assay and western blotting in 46 subjects with asthma and 10 controls and in the lung epithelial cell line BEAS-2B induced with IL-13 and treated with miRNA mimics. Luciferase assays were used to verify IGFBP-3 as a target of miR-34/449, and immunohistochemistry, immunofluorescence and co-immunoprecipitation were used in vitro and in vivo study. miR-34/449 were downregulated in patients with asthma in parallel with the upregulation of autophagy-related proteins. Proinflammatory factors and fibrosis-related proteins were significantly higher in asthma patients than in healthy controls. IL-13 induction promoted autophagy and upregulated miR-34/449 in BEAS-2B cells, and these effects were restored by IGFBP-3 silencing. miR-34/449 overexpression suppressed autophagy, decreased fibrosis, activated Akt, downregulated fibrosis-related factors, and downregulated proinflammatory cytokines and nuclear factor κB by targeting IGFBP-3. In vivo experiments showed that miR-34/449 overexpression was associated with Nur77 nuclear translocation and IGFBP-3 downregulation in parallel with decreased airway remodeling by decreased autophagy. miR-34/449 are potential biomarkers and therapeutic targets in asthma. miR-34/449 may contribute to airway inflammation and fibrosis by modulating IGFBP-3 mediated autophagy activation.
Pulmonary fibrosis (PF), characterized by the destruction of lung tissue architecture and the abnormal deposition of extracellular matrix (ECM) proteins, currently has no satisfactory treatment. In the present study, we investigated the hypothesis that XIST play a promotive role in bleomycin (BLM)-induced ECM and pulmonary fibrosis; XIST exerts its effect through miR-139 regulation. XIST expression was upregulated in lung tissues derived from BLM-induced mouse model of PF, and was positively correlated with β-catenin and ECM protein levels, respectively. LV-sh-XIST-induced XIST knockdown led to decreased PF, reduced β-catenin and ECM protein levels in lung tissues. XIST knockdown suppressed the proliferation of IMR-90 (human fibroblast) and murine lung fibroblasts (MLFCs) and ECM protein expression. Moreover, miR-139 could directly bind to XIST and the 3’UTR of β-catenin; XIST competed with β-catenin for miR-139 binding both in IMR-90 and MLFCs. In MLFCs, miR-139 inversely regulated XIST, and could partially reverse the effect of XIST on β-catenin and ECM proteins. In lung tissues of PF mice, miR-139 expression was downregulated, whereas β-catenin expression was upregulated. In conclusion, XIST exerts positive effects on BLM-induced PF through inhibiting miR-139 to promote human/mouse fibroblast proliferation and ECM proteins.
Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are among the most common malignancies of the female genital tract. Ferroptosis and immunity regulate each other and play important roles in the progression of CESC. The present study aimed to screen ferroptosis- and immune-related differentially expressed genes (FI-DEGs) to identify suitable prognostic signatures for patients with CESC. We downloaded the RNAseq count data and corresponding clinical information of CESC patients from The Cancer Genome Atlas database; obtained recognized ferroptosis- and immune-related genes from the FerrDb and ImmPort databases, respectively; and screened for suitable prognostic signatures using a series of bioinformatics analyses. We identified eight FI-DEGs (CALCRL, CHIT1, DES, DUOX1, FLT1, HELLS, SCD, and SDC1) that were independently correlated with the overall survival of patients with CESC. The prediction model constructed using these eight FI-DEGs was also independently correlated with overall survival. Both the sensitivity and specificity of the prediction model constructed using these eight signatures were over 60%. The comprehensive index of ferroptosis and immune status was significantly correlated with the immunity of patients with CESC. In conclusion, the risk assessment model constructed with these eight FI-DEGs predicted the CESC outcomes. Therefore, these eight FI-DEGs could serve as prognostic signatures for CESC.
This study aims to investigate the clinical characteristics and viral shedding kinetics of asymptomatic patients with coronavirus disease 2019 (COVID-19). The data of 38 asymptomatic patients positive for SARS-CoV-2 nucleic acid were collected from February to March 2020 in Tuanfeng County, Huanggang, Hubei, China. The epidemiology, laboratory examination, chest imaging, viral nucleic acid test results, clinical characteristics, and viral shedding time were summarized in this retrospective study. The study included 20 family members of patients with COVID-19, 10 medical personnel participating in COVID-19 treatment or working in a fever clinic, 6 personnel from quarantine places, 1 individual with a close contact history with confirmed patients, and 1 local epidemic prevention personnel. All were positive for SARS-CoV-2 nucleic acid. The white blood cell (WBC) count, the absolute value of lymphocytes, C-reactive protein (CRP), and D-dimer were normal. Pneumonia manifestations were not found in the chest computed tomography (CT) scan of 36 patients; the remaining 2 cases included a 1-year-old child and a pregnant woman, and they did not undergo chest CT. The viral shedding time was 6 days. All asymptomatic patients with COVID-19 had a history of close contact or exposure. Laboratory tests were normal. Chest imaging did not show any pneumonia manifestation. The viral shedding time was <10 days, which is shorter than that of patients with COVID-19. A timely discovery of such asymptomatic infections is crucial for blocking the spread of the virus and strengthening the prevention and control measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.